
--
By Bhupendra Singh Saud ADBMS 1

Course of Contain

Unit 1: The Relational Model of Data and RDBMS Implementation Techniques [5 Hrs.]

Theoretical concepts, Relational model conformity and Integrity, Advanced SQL programming,

Query optimization, Concurrency control and Transaction management, Database performance

tuning, Distributed relational systems and Data Replication, Security considerations.

Unit 2: The Extended Entity Relationship Model and Object Model [6 Hrs.]

The ER model revisited, Motivation for complex data types, User defined abstract data types and

structured types, Subclasses, Super classes, Inheritance, Specialization and Generalization,

Constraints and Characteristics of specialization and Generalization, Relationship types of degree

higher than two, Relational database design by EER- to relational mapping, basic concepts on

UML.

Unit 3: Emerging Database Management System Technologies [18 Hrs.]

Object Oriented Database concepts: object identity, structure, and type constructors; encapsulation

of operations, methods, and persistence; type and class hierarchies and inheritance; structures and

unstructured complex objects and type extensibility; polymorphism, multiple inheritance and

selective inheritance, versions and configurations; Object Relational Database concepts: overview

of SQL and its object-relational features (the SQL standard and its components, object-relational

support in SQL-99); evolution and current trends of database technology (with respect to the

features of the Informix Universal Server and Oracle8); implementation and related issues for

extended type systems; the nested relational model; Active database concepts: Generalized model

for active databases and oracle Triggers; design and implement issues for active databases potential

applications for active databases; Temporal database concepts: Time representation, calendars, and

time dimensions; incorporating time in relational databases using tuple versioning, incorporating

time in object-oriented databases using attribute versioning, time series data; Multimedia

Databases: The nature of multimedia data and applications; spatial database concepts and

architecture, introduction to multimedia database concepts; Deductive databases and Query

Advanced Database (ADBMS)
 By

 Bhupendra Singh Saud

 For B.Sc. CSIT 7th Semester TU

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 2

processing: Prolog/Data log notations, clausal form and horn clauses; interpretations of rules;

Mobile Databases: Mobile computing architecture, characteristics of mobile environments, data

management issues; Geographic Information Systems: GIS applications, data management

requirements of GIS, specific GIS data operations;

Unit 4: New database applications and environments [8 Hrs.]

Data Mining: Overview of data mining technology (associated rules, classification, clustering),

applications of data mining; Data Warehousing: Overview of data warehousing, typical

functionality of a data warehouse;

Unit 5: Database Related Standards [8 Hrs.]

SQL standards, SQL 1999, SQL 2003, Object Data Management Group (ODMG) version 3.0

standards (ODL, OQL), Standards for interoperability and integration e.g. Web Services, SOAP,

XML related specifications, e.g. XML Documents, DTD, XML Schema, X-Query, XPath.

Prerequisite:

• Be familiar with at least one OO Programming language such as .Net or C++ or Java,

• Fundamentals of DBMS, SQL

Reference Books:

1. Elmasri and Navathe, Fundamentals of Database Systems, Pearson Education

2. Raghu Ramakrishnan, Johannes Gehrke, Database Management Systems, McGraw-Hill

3. Korth, Silberchatz, Sudarshan, Database Systems, Design, Implementation and

Management, Thomson Learning

4. C.J. Date & Longman, Introduction to Database Systems, Pearson Education

Computer Usage:

Windows or Linux based PC or workstation, Commercial OODBMS software package and MVC

software development framework installed at the server.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 3

Unit 1

Theoretical Concept of overall database

Data

The collection of raw facts is called data.

File

A file is the collection of related groups of data for example, payroll file of a company consists of

the salary detail and all of these records have the same heads (e.g.; basic pay, HRA, FA etc.).

Records

A file may be further divided into more descriptive subdivisions, called, records. In other words

a record is a collection of related data items as a single unit. It is also called column of table.

Tuples

The row of a table is called tuples. It is also called value of a table.

Fields

The column of a table is called fields.

Database

A database is a collection of related data necessary to manage an organization. By data, we mean

known facts that can be recorded and have implicit meaning. For example, consider names,

telephone numbers and addresses of the people. We may have recorded this data in an indexed

address book, or we may have recorded on the hard drive, using a personal computer and software

such as MS-Access, or Excel. This is the collection of related data with an implicit meaning and

hence is a database. A database is logically coherent collection of data with some inherent

meaning. A database is designed, built and populated with data for specific purpose. It excludes

transient data such as: input documents, reports and intermediate results obtained during

processing.

DBMS

A database management system is a set of procedures that manages the database and provide

access to the database in the form required by any application program. It effectively ensures that

necessary data in the desired form is available for diverse applications for different departments in

an organization. A DBMS is hence a general purpose software system that facilitates the processes

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 4

of defining, constructing, manipulating, and sharing database among various users and

applications. Fig 1 illustrate the difference between database and database management system.

 Fig 1 illustrates the distinction between a DBMS and a Database.

A database management system (DBMS) is a collection of programs that control the database.

The primary goal of DBMS is store and manages the data conveniently and efficiently.

Why data management is Important?

One of the most valuable resources of any business is the data stored by the business. The efficient

management of data is a key business activity. A systematic approach to data management allows

data to became information

When data becomes information

 When data is organized in a meaningful way, called information that may not have been easily

observable becomes apparent for example total sales buying trends for February 2002 etc.

 Effective data management enables raw data to become useful information.

 Data +semantics(Rules) = information

 Any random collection of data is not a database.

Example uses of DBMS

 Airlines – reservations and schedules etc.

 Banking – customer information and accounts etc.

 Universities – student information, grades etc.

 Government – taxes, budgets, census etc.

 Sales – inventory, customer info etc.

 Credit cards – transactions, customer info etc.

 Newspapers – track subscribers, advertising revenue.

 Financial – stock prices, portfolio info.

 Telecommunications – records of calls made.

Database

management

system

Application1

Application2

Application3

Database

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 5

History

 Integrated data store, first general purpose DBMS, early 1960s, Charles Bachman, general

electrics.

 Information management system (IMS), late 1960s, IBM.

 Relational database model, proposed in 1970 Edgar Codd, IBM's san Jose laboratory.

 Structured Query language (SQL) standardized in the late 1980s.

 More powerful query language, complex analysis of data, support for new data types late

1980s to 1990s.

 Packages which came with power customizable application layers.

 Internet.

Objectives of Database Management

1. Sharing of data

The main motivation for designing a system to manage a database in shareability of data.

Data is considered as an important resource of an organization to be shared by a number of

application .It gives the sharing of data.

2. Data integrity

The term integrity means to the validity of data contained in database. Data integrity can

be reduced in many ways, including input typing errors, hardware malfunctions and data

transmission errors. To avoid data integrity errors, database program should use validation

procedures, which define acceptable input ranges for each field in the record.

3. Data independence

The term data independence refers to the storage of data in such way that it is not locked

into use by the particular application. To ensure data independence, it is important to avoid

software that uses file storage techniques.

4. Avoid data redundancy

The system should identify existence of common data and avoid duplicate recording. The

process of avoiding duplicate data is called data redundancy. Selective redundancy is

sometimes allowed to improve performance or for better reliability.

5. Data Security

This is concerned with protecting access to data. Protection is needed at many levels for

access, modification, deletion or access.

6. Data maintenance

Good database management involves having system in place for data maintenance. This

system includes procedure for adding records, updating records and deleting records.

7. Management control

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 6

As the dependence of an organization on the database increase, positive management

controls should be exercised over addition, deletion, change and disposition of data. Data

must be protected to satisfy legal, accounting and auditing requirements.

Purpose of database systems

Using Database system, we can easily insert, delete and update data from the database. We can

easily retrieve required result. In a file processing system, permanent records are stored in various

files, and different application programs are written to extract records from, and to add records to,

the appropriate files Before DBMS system, organization used to store information using file

processing system. The main purpose of database is to remove the difficulties of file processing

system, which are given below.

Drawbacks of using file systems to store data

1. Data redundancy and inconsistency

The few same data files are often included in many different files, in file processing system.

The redundancy in storing the same data multiple time leads to several problems. First,

there is the need to perform a single logical update- such as entering data on a new student

multiple time: once for each file where student data is recorded. This leads to duplication

of effort. Second, storage space is wastage when the same data is stored repeatedly and this

problem may be serious for large database. Third files that represent the same data may

become inconsistent. This may happen because an update is applied to some of the files

but not to others. Even if an update adding a new student is applied to all the appropriate

files, the data concerning the student may still be inconsistent because the updates are

applied independently by each user group. For example, one user group may enter a

student’s birth date erroneously as JAN-19- 1984, whereas the other user groups may enter

the correct value of JAN – 29 -1984.

2. Integrity problems

Most database applications have certain integrity constraints that must hold for the data. A

DBMS should provide capabilities for defining and enforcing these constraints. The data

in a database satisfy certain types of the consistency constraints. For example the balances

of the bank account never fall below Rs. 500. The file system does not have this facility.

3. Data isolation

In file processing system, data are scattered in various files, and files may be in different

formats. It is difficult to write new application programs to retrieve the appropriate data.

4. Atomicity problem

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 7

In computer, any electrical or mechanical system may fail. When failure has occurred, it is

ensured that has been detected and restored to the consistent state that existed prior to the

failure. This problem cannot solved by file processing system for example a program to

transfer Rs1000 from account A to B. if the system failure occurs during the execution of

program, it is possible that Rs1000 was removed from account A but was not credited to

account B, resulting in an inconsistent database state. It is essential to database consistency

that either both the credit and debit occur or that neither occurs i.e. funds transfer must be

atomic. It must happen in its entirety or not at all .it is difficult to ensure this property in a

file processing system.

5. Difficulty in accessing data

Database systems must provide capabilities for efficiently executing queries and updates.

Because the database is stored on disk the DBMS must provide specialized data structures

to speed up disk search for the desired records. Auxiliary files called indexes are used for

this purpose. Using DBMS, we can access the required result from the whole database. File

processing environment do not allow needed data to be retrieved in a convenient and

efficient manner.

6. Concurrent access anomalies

When the number of systems runs concurrently, the result may be inconsistent data. For

example, suppose account, A, containing Rs5000, if two customers withdraw Rs400 and

Rs500 at about the same time the result of concurrent executions may leave the account in

an incorrect state. Both balances may read the amount Rs5000 and Rs4500, respectively

these types of problem is solved by database.

7. Security problem

In file processing system there is no security method. But in database system unauthorized

person cannot see the data. For example in bank account, there may be number of accounts

and only access the information about particular customers.

Advantages of DBMS approach

 Controlled redundancy.

 Restricting unauthorized access.

 Providing persistent storage for program objects.

 Providing storage structures for efficient Query processing.

 Providing backup and recovery.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 8

 Providing multiple user interfaces.

 Representing complex relationships among data.

 Enforcing integrity constraints.

When a DBMS is needed?

 To integrate efficiently and correctly large volumes of related data

 Supports sharing and discovering of information

o Data mining, deductive databases, active databases

 DBMS ensure true QoS (Quality of Services)

When a DBMS is Inappropriate?

Disadvantages:

 Expensive to buy

 Expensive to maintain (need administrator)

 “Expensive” to run (needs significant resources)

Hence, it is “over-kill” when

 The database is small

 The database has simple structure

 The application is simple and not expected to change

 Can tolerate failures

 Do not require multiple, concurrent users

DBMS Languages

 Data Definition Language (DDL): Used by the DBA and database designers to specify

the conceptual schema of a database. In many DBMSs, the DDL is also used to define

internal and external schemas (views). In some DBMSs, separate storage definition

language (SDL) and view definition language (VDL) are used to define internal and

external schemas.

 Data Manipulation Language (DML): Used to specify database retrievals and updates.

o DML commands (data sublanguage) can be embedded in a general-purpose

programming language (host language), such as COBOL, C or an Assembly

Language.

o Alternatively, stand-alone DML commands can be applied directly (query

language).

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 9

 High Level or Non-procedural Languages: e.g., SQL, are set-oriented and specify what

data to retrieve than how to retrieve. Also called declarative languages.

 Low Level or Procedural Languages: record-at-a-time; they specify how to retrieve data

and include constructs such as looping.

View of data

The main purpose of a database is to provide users with an abstract view of the data, i.e. the system

hides certain details of how the data are stored and maintained. This is called data abstraction.

Three level architecture (ANSI / SPARC Architecture)

 View level.

 Logical / conceptual level.

 Physical level.

1. View level (external level)

It is the highest level of data abstraction. It describes only part of the entire database.

Different users may view the data in different ways. This may involve viewing data in

different formats or derived values which are not stored persistently in the database only

the data relevant to the particular user need be included in the user's view. eg .CS majors,

math major.

2. Logical level (conceptual level);

It describes what data are stored in database and relationship among these data. The entire

database schema is described in terms of small number of relatively small structures. The

logical structures of the entire database described by the conceptual schema. It includes all

data entities attributes and relationship, integrity constrains are defined. All external view

are derivable from conceptual schema it is independent of any storage details e.g.

Course (course no, course name, credits, dept)

Student (student id Lname, Fname, class, maior)

Grade-report (students ID, course No, Grade, tem

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 10

3. Physical level (Internal level)

It is the lower level of abstraction, describes how data are stored. It describes the physical

storage characteristics of the data. Such as storage space allocation, indexes, It is

independent of any particular application software. It also describes how the tables are

stored, how many bytes / attributes it allocated etc.

Advantages of the 3-schema representation

 Each user/application should have their customized view of the data and should be able to

change this view without affecting other users.

 Change to internal level should not affect user views.

 Change to physical storage device should not affect other levels.

 Changes to conceptual level should only affect those users/ applications accessing the

changed data.

Database schema

It is the structure of the DB that captures data types, relationships, constraints on the data. It is

independent of any application program. It may change frequently. It is similar to types and

variables in programming language.

Database instances or state

It is the actual data in the database at a particular moment in time. It is analogous to the value of a

variable in programming language.

Mapping

Conceptual / Internal Mapping

It defines the correspondence between the conceptual view and the stored database. It specifies

how conceptual records and file are represented at the internal level. If a change is made to the

storage structure definition then the conceptual / internal mapping must be changed accordingly

so that the conceptual schema can remain invariant. In other words, the effect of such changes

must be isolated below the conceptual level, in order to preserve physical data independence.

External / conceptual mapping

 It defines the correspondence between a particular external view and the conceptual view. For

example, fields can have different data types, fields and records name can be changed several

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 11

conceptual fields can be combined into a single external fields and so on. Any number of external

views can exist at the same time any number of users can share a given external view, different

external views can overlap.

Data independence

When a schema at a lower level is changed, only the mapping between this schema and higher

level schemas need to be changed in a DBMS that fully supports data independence. The higher

level schemas themselves are unchanged. Hence, the application programs need be changed since

they refer to the external schemas logical data independence. The three schema architecture can

be used to further explain the concept of data independence, which can be defined as the capacity

to change the schema at one level of database system without having to change the schema at the

next higher level. There are two types of data dependence.

Types of data independence

Logical data independence

 The ability to modify the logical schema without changing the view level and application

program depends on the logical schema. We may change the conceptual schema to expand the

database (by adding record type or data item), to change constraints, or to reduce database (by

removing record type or data item).

Physical data independence

The ability to modify the physical schema without changing the logical schema is called physical

data independence. Hence the external schema need not be changed as well. Changes to the internal

schema may be needed because some physical files had to be recognized. For example, by creating

additional access structure – to improve the performance of retrieval or update. If the same data as

before remains in the database, we should not have to change the conceptual schema.

Logical data independence is more difficult to achieve than in physical data independence,

since the application programs are heavily dependent on the logical structure of data that they

access.

 The concept of data independence is similar in many respects to the concept of abstract data

types in modern programming language. Both hide implementation details from the users to

concentrate on the general structure, rather than on low level implementation details.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 12

Data dictionary

The result of compilation of DDL statement is a set of tables that is stored in a special file called

data dictionary. A data dictionary is a file that contains metadata that is data about data. This file

is consulted before actual data are read or modified in a database system.

Data model

A collection of conceptual tools for describing data, data relationships, data semantics and

consistency constraints is called data model. The various data model that have been proposed fall

into three different groups.

 Object based logical models.

 Record based logical models.

 Physical model

Object based logical model

Object based logical models are used in describing data at the logical and view levels. They are

characterized by the fact that they provide fairly flexible structuring capability and allow data

constraints to be specified explicitly. There are many different object based logical models.

 The entity relationship model.

 The object oriented model.

 The semantic data model.

 The functional data model.

The Entity Relationship model

The entity relationship model(ER model) is based on a perception of a real world that consists of

a collection of basic objects, called entities, and of relationship among these objects and

characteristics of an entity.

Entity-Relationship (E-R) diagram

The diagrammatic representation of entities attributes and their relationship is described by E-R

diagram. The E-R diagram is an overall logical structure of a database that can be expressed

graphically. It was developed to facilitated database design and the simplicity and pictorial clarity

of this diagramming technique have done great help in the designing part of database. The basic

components of ER diagram are given below.

Entity:

An entity is a “thing” or “object” in the real word that is distinguishable from other objects. For

example each person is an entity. An entity has a set of properties and the values for some set of

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 13

properties may uniquely identify an entity. For example, if student is an entity, is identified by

registration number. It is represented by rectangle.

 Entity

Attribute:

Attributes are properties possessed by on entity or relationship. For example stu_no,

stu_namestu_sub are the attributes of the entity student. Attribute is represented by ellipse.

 Attribute

Relationship:

 A relationship is an association among several entities and represents meaningful

dependencies between them. For example the association between teachers and students is

teaching. It is represented by diamond.

 Relationship

The Object Oriented Model

Like E-R model object oriented model is based on a collection of objects. An object contains values

stored in instance variables with in an object. An object also contains bodies of code that operate

in on an object. The bodies of code are called methods.

Objects that contain the same types of values and the same methods are grouped together into

classes. A class may be viewed as a definition for objects. This combination of data and methods

comprising a type definition is similar to programming language abstract data type.

Record Based Logical Model

Record Based Logical Model are used in describing data at logical and view levels. In contrast to

object-based data models, they are used both to specify the overall logical structure of the database

and to provide a higher level description of the implantation.

Record based models are so named because the database is structured in fixed format records of

several types. Each record type defines a fixed number of fields or attributes, and each field is

usually of a fixed length. The record based logical models are given below.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 14

1. Relational model

In June 1970, Dr. E.F. codd published a paper entitled. A relational model of data for large shared

data banks. This relational model of data for large shared data banks. This relational model,

sponsored by IBM, then came to be accepted as the definitive model for relational database

management system (RDBMS).

The relational model uses a collection of tables to represent both data and the relationship among

those data. Each table has multiple columns, and each column has a unique name .The relational

database is relatively new. The first database system was based of either a network model or

hierarchical model. This model greatly improves the flexibility of the database management

system. It has established itself as a primary data model for commercial data processing

application.

Table 1. Teacher Table 2: Student

Tea_id Tea_name Tea-address

T1 Rajesh Balaju

T2 Gopal Naxal

T3 Govinda Asan

T4 Gopi Maipi

A relational database management has following properties:

 Represent data in the form of table.

 Shows the relationship between two or more its physical tables.

 Does not require the user to understand its physical implementation.

 Supports in an iterative query language.

 Provides information about its content and structure in system table.

 Support the concept of null values.

2. Network Model

Data in the network model are represented by collection of records and the relationships among

data are represented by links which can be viewed as pointers. The records in the database are

organized as collection of arbitrary graphs.

It is an improvement of hierarchical model. Here multiple parent-child relationship is used. The

network approach allows us to build up many to many correspondences that mean each child can

have more than one parent. This model is more versatile and flexible than the hierarchical model.

Stu-id Stu-name Tea-id

S1 Gita T1

S2 Radha T1

S3 Nita T2

S4 Rajan T3

S5 Rasendra T4

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 15

A record is in many respects similar to an entity in the entity relationship model. Each record is a

collection of fields (attributes). Each of which contains only one data value. A link is an association

between precisely two records.

A data structure diagram is a schema representing the design of network database. Such a diagram

consists of two basic components, boxes, which correspond to record types, and lines which

correspond to links.

Fig: Data structure diagram

3. Hierarchical Model

The hierarchical model is a similar to the network model in the sense that data and relationship

among data are represented by records and links respectively. It differs from the network models

are that the records are organized as collection of trees rather than arbitrary graphs.

This model is introduced in the information management system (IMS) depend by IBM in 1968.

The top level of data is parent or root and other are sub-root or branches which may have

subdivision.

 Tree structure diagram is the schema for a hierarchical database such a diagram consists of two

basic components, boxes which correspond to record types and lies, which correspond to links.

Disadvantage of Hierarchical Model

 This structure is not flexible enough to represent all the relationships occur in a real world.

 It cannot have many to many relationships.

 The hierarchical model is used only when the concerned data has a clearly hierarchical

character with a single route. E.g. DOS directory structures.

Cu-name cu-street cu-city Acc-number acc-balance

Science

Biology Chemistry Physics

Zoology Botany

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 16

4. Physical data model

Physical data models are used to describe data at the lowest level. In contrast to logical data model,

there are few physical data models such as unifying model and frame-memory model.

Transaction

A transaction is a collection of operations that performs a single logical function in a database

application. Each transaction is a unit of bath atomicity and consistency. Thus, we require that

transactions do not violate any data base consistency constraints .i.e. if the database was consistent

when the transaction stated, the database must be consistent when the transaction successfully

terminated outing the execution of transaction it may be necessary temporarily to allow

inconsistency. This temporary inconsistency although necessary

Storage management

 Database requires large amount of storage space. It is measured in gigabytes or terabytes.

 The large amount of data cannot store in main memory so data are moved from main

memory to secondary memory as needed and vice versa. It is important that the data base

system structure the data so as to minimize the need to move data between disk and main

memory.

 The goal of database system is to simplify and facilitate access to data high level views

help to active this goal.

 Storage manager is a program module that provides the interface between the low level

data stored in the database and the application programs and queries submitted to the

system.

 The storage manager is responsible for the interaction with the file manager

 The raw data are stored on the disk using the file system, which is usually provided by a

conversion operating system.

 The storage manager translates the various DML statements into low-level file system

commands. Thus the storage manager is responsible for storing, retrieving and updating of

data in the database.

Database Administrator (DBA)

DBA is a person who understands that data and the needs of the enterprise with respect to that data

at a senior management level. Thus it is that a DBA's job to decide what data should be stored in

the database in the first place and to establish policies for maintaining and dealing with the data

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 17

once it has been stored. An example of such a policy might be, one that dictates who can perform

what operators in what data in what circumstances, in other words security policy. Data

administrator is a manager not a technical.

The DBA will typically have a staff of system programmers and other technical assistants. Thus

the DBA is responsible for the overall control of the system at a technical level some tasks of DBA

are as follows.

1. Schema definition

 DBA creates the original database schema by writing a set of definitions that translated by the

DDL compiler to a set of tables that is stored permanently in the data dictionary.

2. Storage structure and access method definition

By writing a set of definitions, DBA creates appropriate storage structure and access methods.

Which is translated by the data storage and data definition language compiler.

3. Schema and physical organization modifications

DBA has the responsibility to modify schema and physical organization programmers accomplish

the relatively modifications either to database schema or the description of the physical storage

organization by writing a set of definitions that is used by either the DDL compiler or data storage

and data definition language compiler to generate modifications to the appropriate internal system

tables (e.g. data dictionary)

4. Granting of authorization for data access

The granting of different types of authorization allows the database administrator to regulate which

parts of database various users can access. The authorization information is kept in a special system

structure that is consulted by the database system whenever access to the data is attempted in the

system.

5. Integrity constraint specification

The data values stored in the database must satisfy certain consistency constraints. For example

the no of hours an employ may work in 1 week may not exceed a specified limit. Such a constraint

must be specified explicitly by the database administrator. The integrity constraints are kept in a

special system structure that is consulted by the database system whenever an update takes place

in the system.

6. Defining dumps and reload policies

7. Monitoring performance and responding to changing requirement using.

DDL: data definition language.

SDL: storage definition language.

VDL: view definition language.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 18

Database Users

The main goal of database system is to provide an environment for retrieving information from

and storing new information into the database. These are four types of database users.

1. Application Programmers

Application programmers are persons who write the program in HLL Such as C, COBOL, PL/1,

Pascal etc. They prepare program for bank, hospital, school etc.

2. Sophisticated users

They interact with system without writing programs. They form their requests in the database

query language. Each such query is submitted to query processor. Whose function is to break

down DML statement into instructions that the storage manager understands. The analyst who

submits queries to explore data in a database is called sophisticated users.

3. Specialized Users

They are sophisticated users who write specialized database applications that do not fit into

traditional data processing framework. Among these applications are computer aided design

system, knowledge base and export system. System that store data with complex data types eg

graphic data, audio data etc.

4. Naïve Users

They are unsophisticated users who interact with system by invoking one of the permanent

application programs that have been written previously. eg. a bank teller who needs to transfer

$50 from account A to account B invokes a program called transfer. This program asks the teller

for the amount of money to be transferred, the account from which the money to be transferred,

and the account to which the money is to be transferred

Overall Database System

The functional components of a database system can be broadly divided into

 Storage Manager

 Query Processor Components

Storage Manager

Storage manager is a program module that provides the interface between the low level data stored

in the database and the application programs and queries submitted to the system. The storage

manager is responsible for the following tasks.

 Interaction with the file manager.

 Efficient storing, retrieving and updating data.

The storage manager components includes:

1. Authorization and integrity manager

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 19

Which tests for the satisfaction of integrity constraints and checks the authority of users to

access data

2. Transaction Manager

Which ensures that the database remains in a consistent (correct) state despite system failures,

and that current transition execution proceed without conflicting

3. File manager

Which manages the allocation of space on disk storage and that concurrent transaction

execution proceed without conflicting.

4. Buffer Manager

Which is responsible for fetching data from disk storage into main memory, and deciding what

data to cache in main memory. The manager is critical part of the database system, since it

enables the database to handle data sizes that are much larger than the size of main memory.

The storage manager implements several data structures as part of the physical system

implementation.

 Data files

Which store the database itself.

 Data Dictionary

Which stores metadata about the structure of the database in particular the schema of the

database.

 Indices

Which provides fast access to data items that hold particular values.

 Statistical data

Which stores statistical information about data in the database. This information is used by

query processor to select efficient ways to execute a query.

The Query processor

The query processor components include.

 DDL Interpreter

Which interprets DDL statements and records the definitions n the data dictionary.

 DML Compile

Which translates DML statements in a query language into an evaluation plan consisting

of low level instructions that the query evaluation engine understand.

 Embedded DML pre-compiler

Which convents DML statements embedded in an application program to normal procedure

call in the host language. The pre-compiler must interact with the DML complier to

generate the appropriate code.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 20

 Query Evaluation Engine

Which executes low level instructions generated by DML compiler.

Relational Model

The relational model is today the primary model for commercial data processing applications. It

has attained its primary position because of its simplicity as compared to earlier data models such

as the network model or the hierarchical model. It is a lower level model that uses a collection of

tables (also called relations) to represent both data and the relationship among those data. A table

of values is called relation. A relation may be thought of as a set of rows. A relation may

alternately be thought of as a set of columns. Each row represents a fact that corresponds to a real-

world entity or relationship. Each row has a value of an item or set of items that uniquely

identifies that row in the table. Sometimes row-ids or sequential numbers are assigned to identify

the rows in the table. Each column typically is called by its column name or column header or

attribute name. Each table has multiple columns and each column has a unique name.

Example: RDBMS

Formal Definitions

A Relation may be defined in multiple ways.

 The Schema of the form: R (A1, A2 ...An) is called relation, Relation schema R is defined over

attributes A1, A2 ...An.

 For Example:

 CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER is a relation defined over the four attributes Cust-id, Cust-name, Address,

Phone#, each of which has a domain or a set of valid values. For example, the domain of Cust-id

is 6 digit numbers.

Tuple

A tuple is an ordered set of values. Each value is derived from an appropriate domain. Each row

in the CUSTOMER table may be referred to as a tuple in the table and would consist of four values.

<632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000"> is a tuple

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 21

belonging to the CUSTOMER relation. A relation may be regarded as a set of tuples (rows or

records).

Domain

A domain has a logical definition: e.g., “USA_phone_numbers” are the set of 10 digit phone

numbers valid in the U.S. A domain may have a data-type or a format defined for it. The

USA_phone_numbers may have a format: (ddd)-ddd-dddd where each d is a decimal digit. E.g.,

Dates have various formats such as month name, date, year or yyyy-mm-dd, or dd mm, yyyy etc.

An attribute designates the role played by the domain. E.g., the domain Date may be used to define

attributes “Invoice-date” and “Payment-date”. The relation is formed over the Cartesian product

of the sets; each set has values from a domain; that domain is used in a specific role which is

conveyed by the attribute name. For example, attribute Cust-name is defined over the domain of

strings of 25 characters. The role these strings play in the CUSTOMER relation is that of the name

of customers.

Formally,

 Given R(A1, A2,, An)

 r(R)  dom (A1) X dom (A2) XX dom(An)

R: schema of the relation

r of R: a specific "value" or population of R.

R is also called the intension of a relation

r is also called the extension of a relation

Example

Let S1 = {0, 1}

Let S2 = {a, b, c}

Let R  S1 X S2

Then for example: r(R) = {<0, a>, <0, b> , <1, c> } is one possible “state” or “population” or

“extension” r of the relation R, defined over domains S1 and S2. It has three tuples.

Definition Summary

Informal Terms Formal Terms

Table Relation

Column Attribute/Domain

Row Tuple

Values in a column Domain

Table Definition Schema of a Relation (Intension)

Populated Table Extension

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 22

Data Integrity

The fundamental function of the DBMS is to maintain the integrity of the data. Data integrity

ensures that the data in the database is consistent, accurate, correct, and valid. It ascertains that the

data adhere to the set of rules defined by the database administrator and hence, prevents the entry

of the invalid information into database. Data integrity is of four types, namely, domain

integrity, entity integrity, referential integrity, and semantic integrity. Generally, domain integrity

is applied on the attribute; entity integrity is applied on the tuple; referential integrity is applied on

the relation; and semantic integrity ensures logical data in the database.

1. Entity Integrity

The entity integrity constraint states that no primary key (nor any part of the primary key) value

can be null. This is because the primary key value is used to identify individual tuples in a

relation. Having null value for the primary key implies that we cannot identify some tuples.

This also specifies that there may not be any duplicate entries in primary key column.

2. Referential Integrity

The referential integrity constraint is specified between two relations and is used to maintain

the consistency among tuples in the two relations (Parent and Child). Informally, the referential

integrity constraint states that a tuple in one relation that refers to another relation must refer

to an existing tuple in that relation. It is a rule that maintains consistency among the rows of

the two relations. Examples of Referential integrity constraint in the Customer/Order database:

Customer (custid, custname)

Order (orderID, custid, OrderDate)

To ensure that there are no orphan records, we need to enforce referential integrity.

An orphan record is one whose foreign key value is not found in the corresponding entity – the

entity where the PK is located.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 23

3. Domain Integrity

A domain represents a set of values that can be assigned to an attribute. Domain integrity

constraint is specified on the column (attribute) of a relation, so that correct values can be

entered in the column for each record. The domain integrity states that every element from a

relation should respect the type and restrictions of its corresponding attribute. For example, we

can specify the value of 'Marks' attribute of "Student" table which must be greater than 0 and

less than or equal to 100.

4. Semantic Integrity

To represent real world accurately and consistently, business rules and logical rules must be

enforced in database. Such rules are derived from our knowledge of the application semantics

and are called semantic integrity constraints. Semantic integrity ensures that data in the database

is logically consistent and complete with respect to the real world. This type of integrity cannot

be expressed by the model and contains integrity constraints like:

 Number of pages of a book cannot be zero

 A book is published by only one publisher

 An author cannot review his own book etc.

A constraint specification language may have to be used to express these rules. SQL-99 allows

triggers and assertions to allow for some of these.

Advanced SQL

SQL stands for structured query language developed at IBM research for system R. It includes

features of relational algebra and tuple relational calculus. It is standard for relational data access.

It is DBMS independent. It is one commercially available query language. SQL can define the

structure of data create table, index, view alter table etc. modify data in the data base such as select,

update, delete, insert etc.

SQL Data type

 Numeric

 Character strings

 Bit strings

 Temporal data

 Null value

Numeric data

 Exact number

Two integer types with different ranges.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 24

INTEGER (or INT) and SMALLINT

 Approximation numbers

Three floating point type:

FLOAT, REAL and DOUBLE PRECISION.

 User can define the precision for FLOAT

 The precision of REAL and DOUBLE PRECISION is fixed.

 Floating point numbers can be in decimal or scientific notation.

SQL Character strings

A Character string is a sequence of printable chars. In SQL, character string is denoted by enclosing

it in single quote; e.g. ‘Hello SQL'

Two types of character strings :

 Fixed length n: CHAR (n) or CHARACTER (n)

Varying length of maximum n: VARCHAR (n) or CHARACTER (n).

SQL Bit Strings

Bit strings are sequences of binary digits or bits. Bit string types are:

Fixed length n: BIT (n)

Varying length of maximum n: VARBIT (n) or BITVARYING (n). The default value for

n is 1.

SQL temporal data

Date data type

Date format is: YYYY-MM-DD

Time data type

Time format is HH: MM: SS

Interval data type

E.g. Admit date – discharge date.

 Format is INTERVAL start field (p) [to end – field (fs)]

SQL components

1. Data definition language (DDL):

The SQL DDL provides commands for defining relation schema, deletion relations, creating

indices, and modifying relation schemas.

2. Interactive data definition language (DML):

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 25

The SQL DML includes languages a query language based on both the relational algebra and

the tuple relational calculus. It includes also commands to insert tuples into delete tuples from

and modify tuples in the database.

3. Embedded DML:

The embedded form of SQL is designed for use with in general purpose programming

languages, such as PL/1, COBOL, PASCOL, FORTRAN and C.

4. View definition:

The SQL DDL includes commands for defining views.

5. Authorization:

The SQL DDL includes commands for specifying access rights to relations and views.

6. Integrity:

The SQL DDL includes commands for specifying integrity constraints that the data stored in

the database must satisfy. Updates that violate integrity constraints are disallowed.

7. Transaction control:

SQL includes commands for specifying the beginning and ending of transactions. Several

implementations also allow explicit locking of data for concurrency control.

Table creation

A new relation can be created using the CREATE TABLE command. The general syntax is as

follows.

 CREATE TABLE table_name [{column descriptors}];

e.g. CREATE TABLE DEPARTMENT;

Table Creation Example

CREATE TABLE employee

(

Emp-no INT(6) NOT NULL,

Name VARCHAR(20),

Gender CHAR,

DOB DATE,

Salary DECIMAL (8, 2),

PRIMARY KEY (EMP-no)

);

The relations for banking enterprise are given below:

Branch = (branch_name, branch_city, asserts)

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 26

Customer = (customer_name, customer-street, customer- city)

Loan = (branch- name, loan number amount)

Borrower = (customer- name, lone- number)

Account = (branch_name, account_number, balance)

Depositor = (customer- name, account_number)

Select Overall Form

 SELECT <attributes and function list >

 FROM < table list >

 [WHERE < condition >]

 [GROUP BY <grouping attributes >]

 [HAVING <group condition >]

 [ORDER BY < {attribute ASC/DESC} list >];

Basic Structure

 The basic structure of an SQL expression consists of three clauses. SELECT, FROM and

WHERE.

The SELECT clause corresponds to the project operation of the relational algebra. It is used to list

the attributes desired in the result of a query. The FROM clause corresponds to the Cartesian

product operation of relational algebra. It lists the relations to be scanned in the evaluation of the

expression. The WHERE clause corresponds to the selection pedicure of the relational algebra. It

consists of a predicate involving attributes of the relations that appear in the form clause.

The SQL query is the form

 SELECT A1 A2,……………,An

 FROM R1, R2, ……………Rn

 WHERE P;

Where A1 A2,……………,An are attributes, R1, R2, ……………Rn are relations and p is

predicate i.e. condition.

The Rename operation

SQL allows renaming attributes.

Syntax

 Old_name AS new_name

We can use as clauses in both select and from clause.

Example: loan_no is replaced by loan_id

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 27

 SELECT customer_name, borrower.loan_number AS loan_id

 FROM borrower, loan

 WHERE borrower.loan_number = loan.loan_number AND branch_name = ‘bagbazar’;

Tuple Variables

The as clause is used in defining the notion of tuple variable, as is done in the tuple relational

calculus. The tuple variable in SQL must be associated with a particular relation. Tuple variables

are defined in the FROM clause.

#For all customers who have a loan from the bank, find their names and loan numbers.

SELECT DISTINCT customer_name, T.loan_number

FROM borrower AS T, loan AS S

WHERE T.loan_number=S.loan_number;

String operations

The commonly used operation on string is pattern matching using the operator “like”. We use two

special characters:

Percent (%): it matches any substring.

Underscore (-): it matches any character.

Example: Find the names of all customers whose street address includes the substring "main" is:

SELECT customer_name

 FROM Customer

WHERE street like "%main%"

Some examples are:

 “Perry%” matches any string beginning with “Perry”.

 “%edge%” matches any string containing “edge” as a sub string.

 “- - -“matches any string of exactly three characters.

 “- - -%” matches any string of the least three characters.

Ordering the display of tuples

The ORDER BY clause is used to list the tuples in sorted order.

Example: To list in alphabetical order all customers who have a loan at Bagbazar branch is:

 SELECT DISTINCT customer_name

 FROM borrower, loan

 WHERE Borrower.loan_number = loan.loan_number AND Branch_name = ‘bagbazar’

 ORDER BY customer_name ;

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 28

We can specify DESC for descending order or ASC for ascending order.

E.g. List all attributes from loan relation amount by descending order and loan_number by

ascending order.

 SELECT *

 FROM loan

 ORDER BY amount DESC, loan_number ASC.

Set operations

Set operations are union, intersect and except.

The union operation

Find all customers having a loan, an account or both is:

(SELECT customer_name

FROM depositor)

UNION

(SELECT customer_name

FROM borrower)

The union operation automatically eliminates duplicates. For duplicate value we use union all in

place of union.

(SELECT customer_name

FROM depositer)

UNION ALL

(SELECT customer_name

FROM borrower)

The intersection operation

To find all customers who have a both loan and an account at the bank is:

(SELECT distinct customer_name

FROM depositor)

INTERSECT

(SELECT distinct customer_name

FROM borrower)

The select operation automatically removes duplicates. If we want all duplicates, than intersect all

in place of intersect.

E.g.

(SELECT customer_name

FROM Depositor)

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 29

INTERSECT ALL

(SELECT customer_name

FROM borrower)

The except operation

To find all customers who have an account but no loan at the bank is:

(SELECT DISTINCT customer_name FROM depositor)

 EXCEPT

 (SELECT customer = name FROM borrower)

Except operation automatically removes duplicated. If we want to reliant all duplicates then except

is replaced by EXCEPT ALL.

(SELECT eustomer-name FROM depositor)

EXCEPT ALL

(SELECT customer_name FROM borrower)

Aggregate functions

Aggregate functions that take a collection of value as input and returns a single value. Aggregate

functions are given below:

 Average : AVG

 Minimum : MIN

 Maximum : MAX

 Total : SUM

 Count : COUNT

To find the average account balance of Bagbazar branch.

SELECT AVG (balance)

FROM account

WHERE branch- name = ‘Bagbazar’

For the group of tuples, we can use group by to find the average account balance at each branch

is:

SELECT branch_name, AVG (balance)

FROM account

GROUP BY branch- name

If we want duplication is removed then distinct is used. To find the number of depositors for each

branch is:

Select branch_name, count (distinct customer- name)

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 30

From depositor, account

Where depositor account- number = account_account_number

Group by branch_name.

For the condition in group by clause we use having clause

e.g. To list branch_name and average balance group by branch_name having average balance

greater than 1200 is:

Select branch_name, avg (balance)

From account

Group by branch_name

Having avg (balance) > 1200

To find the average balance for all customers:

Select avg (balance)

From account

To find number of tuples in the customer relation:

Select count (*)

From customer

Find the averages balance for each customer who lives in lalitpur and has at least three accounts.

Select depositor.customer- name, avg (balance)

From depositor, account, customer

Where depositor.account_number = account.account_number and

depositor.customer_name = customer.customer_name and customer_city = "lalitpur"

Group by depositor.customer_name

Having count (distinct depositor.Account_number) > = 3

Null values

Null values are values that indicate absence of information about the value of an attribute.

To find the loan number with null values.

Select loan-number

From loan

Where amount is null;

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 31

Nested Sub queries

A sub query is nested inside another query called nested sub queries. A common use of sub queries

is to perform tests for set membership, set companions and set cardinality.

Set membership

The in connective tests for set membership, where the set is a collection of values produced by a

SELECT clause.

The NOT IN connective tests for the absence of set membership consider the query:

Find all customers who have both a loan and account at the bank. This is solved by union operation

and another approach is finding all account holders at the bank who are members of the set of

borrowers from the bank. This formation generates the same results as did the previous one but it

leads us to write our query using in connective of SQL. We first by finding all account holders.

(Select customer_name

 From depositor)

We then need to find those customers who are borrower from banks and who appear in the list of

account holders obtained on the sub query. The result is

 select distinct customer_name

 form borrower.

 Where customer_name in (select customer_name from depositor);

 Find all customers who have both on account and loan at the Bagbazar branch.

 (Select distinct customer_name

 From borrower, loan

 Where borrower . loan number = loan . loan-number.

 and branch_name = "bagbazzar" and (branch_name, customer_name) in (select

branch_name, customer_name from depositor, account Where

depositor.account_number = account.account_number)

We also use not in clause

To find all customer who have a loan at a bank but don't have an account at the bank.

Select distinct customer_name

From borrower

Where customer_name not in (select customer_name

From depositor);

Set Comparison

We use comparison operators for set comparison operations. "Greater than at least one" is

represented by > some.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 32

Find the names of all branches that have assets greater than those of at least one branch located in

Bagbazar branch.

Select branch_name

From branch

Where assents > some (select asserts From branch Where branch_city = ‘Bagbazar’);

SQL allows < some, < = some, =some, and < > some is not the same as not in.

Find the names of all branches that have asserts greater than that of each branch in Bagbazar.

SELECT branch_name

FROM branch

WHERE assets > ALL (SELECT assets FROM branch WHERE branch_city = ‘Bagbazar’)

SQL also allows < all, <= all, > = all, and < > all comparisons

Find the branch that has the highest average balance

SELECT branch_name

FROM account

GROUP BY branch_name

HAVING AVG (balance) > = ALL (SELECT AVG (balance)

 FROM account

 GROUP BY branch_name);

Test for empty relations

SQL allows for testing whether a sub query has any tuples in its result. The EXISTS construct

returns the value true if the argument sub query is non empty.

Find a customers who have both an account and a loan at the bank is:

SELECT customer_name

FROM borrower

WHERE EXISTS (SELECT * FROM depositor

 WHERE depositer.Customer_name = borrower.Customer_name);

There is nonexistence tuples to test in a sub query by using the non-exists construct. We can use

the not exists construct to simulate the set containment (i.e. subset) operation. We can write

"relation A contains relation B" as "not exists (B except A)"

Find all customers who have an account at all the branches located at Bagbazar.

SELECT DISTINCT s.customer_name

FROM depositor AS S

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 33

WHERE NOT EXISTS (SELECT branch_name FROM branch

WHERE branch_city = ‘Bagbazar’)

EXCEPT

(SELECT R.branch_name FROM depositor AS T, account AS R

WHERE T. account_number = R. account_number AND S. customer name = T. customer

name)

Derived Relations

The result of the relation can be renamed and the attributes also renamed by AS clause.

 (SELECT branch_name, AVG (balance) FROM depositer

 GROUP BY branch_name AS result (branch_name, avg – balance)

View

We can create view in SQL by CREATE VIEW command. The syntax is given below:

 CREATE VIEW V AS < query expression >

We can define view for the names of customers who have either an account or a loan is:

 CREATE VIEW all_customer AS

 (SELECT branch_name, customer_name FROM depositor, account

 WHERE depositor.account_number = account.Account_number)

 UNION

 (SELECT branch_name, customer_name

 FROM borrower, loan

 WHERE borrower.loan_number = loan.loan_number);

Modification of the Database

SQL allows deleting, inserting and modifying data in a database.

Deletion

SQL allows to delete only whole tuples. We cannot delete values on only particular attributes.

Syntax

DELETE FROM r

WHERE p;

Where r is the relation in which we have to delete values and p is the predicate condition

E.g. To delete Puspa’s account records

DELETE FROM depositor

WHERE customer_name = ‘puspa’;

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 34

To delete all loan amounts between 4000 and 5000

DELETE FROM loan

WHERE amount BETWEEN 4000 AND 5000;

To delete all account at every branch located in Bagbazar

 Delete from account

 Where branch_name in (select branch_name from branch

 Where branch_city = ‘bagbazar’);

To delete the records of all accounts with balance below the average at the bank.

 Delete from account

 Where balance < (select avg (balance) FROM account)

Insertion

We can insert tuples in the relation. The attributes values for inserted tuples must be members of

the attributes domain. Tuples inserted must be of the correct aritry.

To insert account_no 501 at the Bagbazar branch and the balance is 5000

INSERT INTO account VALUES (‘Bagbazar’, 501, 5000)

It is equivalent to:

INSERT INTO account (branch_name, account_number , balance)

VALUES (‘Bagbazar’, 501, 5000);

It is also equivalent to:

 Insert into account (account_number, branch_name, balance)

 Values (501, ‘Bagbazar’, 5000)

The insert statement considered only examples in which a value is given for every attribute in

inserted tuples. It is possible for inserted tuples to the given values on only some attributes of the

schema. The remaining attributes are assigned a null value denoted by NULL e.g.

 Insert into account

 Values (NULL, ‘B-101’, 1500)

We know that account B-101 has Rs 1500 but branch name is not known.

Updates

We can change a value in a tuple without changing all values in the tuple. For this, update statement

can be used.

To increase the balance by 5 percent

UPDATE account

SET balance = balance * 1.05;

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 35

Account with balance over 10,000 receives 6 percent interest and other receives 5 percent.

UPDATE account

SET balance = balance * 1.06

WHERE balance > 10000

UPDATE account

SET balance = balance * 1.05

WHERE balance < = 10000;

Update of a view

We can create view by:

 Create view branch_loan as

 Select branch_name, loan_number

 From loan;

We can update by:

 Insert into branch_loan

 Values (‘pokhara’, 305)

Data Definition Language

The SQL DDL allows the specification of set of relations and information about each relation. The

information includes:

 The schema for each relation.

 The domain of values associated with each attribute.

 The integrity constraints.

 The set of indices to be maintained for each relation.

 The security and authorization information for each relation.

 The physical storage structure of each relation on disk.

Schema Definition in SQL

We can define SQL relation using the create table command.

 Create table r (A1 D1, A2 D2,……..,An Dn, < integrity_constraint 1>

 …………………….

 < integrity_constraint k >);

Where r is the name of the relation each A is the name of an attribute type in the values in the

domain of attribute Ai.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 36

Examples:

CREATE TABLE customer

(customer_name CHAR (20) NOT NULL,

customer_strees CHAR (30),

customer_city CHAR (30),

PRIMARY KEY (customer_name));

CREATE TABLE Branch

(branch_name CHAR(15) NOT NULL,

Branch- city CHAR (30),

Assets INTEGER,

PRIMARY KEY (branch_name),

CHECK (assets > = 0);

CREATE TABLE account

(account_number CHAR(10) NOT NULL,

branch_name CHAR(15),

Balance INTEGER,

PRIMARY KEY (account_number),

CHECK (balance > = 0));

CREATE TABLE depositor

(customer_name CHAR(20) NOT NULL,

account_number CHAR(10) NOT NULL,

PRIMARY KEY (customer_name,

account_number)),

Delete Table

To remove a relation from SQL database. We use DROP TABLE command. It removes all

information and table also. The command is

 DROP TABLE r

Where r is the relation

Alter Table

We use alter table command in SQL to add attributes to the existing relation. All tuples in the

relation are assigned null as the value for the new attribute. The form of alter table command is:

 ALTER TABLE r ADD A D

 Where r is the name of existing relation, A is the name of attribute to be added and D is the domain

of the added attribute. We can drop attributes from a relation using a command:

 ALTER TABLE r DROP A

Where r is the name of an existing relation and A is the name of attribute in a relation.

Integrity constraints

The term integrity refers to the accuracy or correctness of data in the database. Integrity constraint

is a condition specified on a database schema which must hold on all of valid relation instances.

Integrity constraints ensure that changes made to the database by authorized users do not result in

a loss of data consistency. Thus, integrity constraints guard against accidental damage to the

database. Constraints are basically used to impose rules on the table, whenever a row is inserted,

updated, or deleted from the table. Constraints prevent the deletion of a table if there are

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 37

dependencies. The different types of constraints that can be imposed on the table are domain

constraints, referential constraints, trigger, assertions etc. The constraints related to domain

constraints are NOT NULL, UNIQUE, PRIMARY KEY and CHECK constraints.

1. Domain constraints

 NOT NULL constraints

 UNIQUE constraints

 PRIMARY KEY constraints

 CHECK constraints etc.

2. Referential constraints

3. Triggers

4. Assertion

Domain constraint

Domains are used in the relational model to define the characteristics of the columns of a table.

Domain refers to the set of all possible values that attribute can take. The domain specifies its own

name, data type, and logical size. The logical size represents the size as perceived by the user, not

how it is implemented internally. For example, for an integer, the logical size represents the

number of digits used to display the integer, not the number of bytes used to store it. The domain

integrity constraints are used to specify the valid values that a column defined over the domain can

take. We can define the valid values by listing them as a set of values (such as an enumerated data

type in a strongly typed programming language), a range of values, or an expression that accepts

the valid values. Strictly speaking, only values from the same domain should ever be compared or

be integrated through a union operator. The domain integrity constraint specifies that each attribute

must have values derived from a valid range

The create domain clause can be used to define new domains. For example, to ensure that age

must be an integer in the range 1 to 100, we could use:

CREATE DOMAIN Ageval INTEGER

CHECK (VALUE >= 1 AND VALUE <= 100)

The domain can be restricted to contain only a specified set of values by using IN clause:

 CREATE DOMAIN AccountType CHAR (10)

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 38

 CONSTRAINT account-type-test

 CHECK (VALUE IN (‘Checking’, ‘Saving’)

SQL also provides drop domain and alter domain clauses to drop or modify domains that have

been created earlier.

CHECK Constraints

CHECK constraint is added to the declaration of the attribute. The CHECK constraint may use the

name of the attribute or any other relation or attribute name may in a sub-query. Attribute value

check is checked only when the value of the attribute is inserted or updated. CHECK constraints

allow users to prohibit an operation on a table that would violate the constraint. It is a local

constraint.

Example: let’s create a student table with attributes student id, student name, age and address. If

we need to allow only those students in the table whose age must be an integer range 20 to 45, we

could use the CHECK constraint during the creation of table as below:

CREATE TABLE Student

(

 sid INTEGER,

 sname VARCHAR(20),

 age INTEGER,

 PRIMARY KEY (sid),

 CHECK (age>=20 AND age<=45)

)

In the above student table if we are trying to insert a new record as

 INSERT INTO Student

 VALUES (5, “Rajesh”, 15);

We get insertion is rejected message since value of age attribute violated the check condition.

Referential Integrity

In the relational data model, associations between tables are defined through the use of foreign

keys. The referential integrity rule states that a database must not contain any unmatched foreign

key values. It is to be noted that referential integrity rule does not imply a foreign key cannot be

null. There can be situations where a relationship does not exist for a particular instance, in which

case the foreign key is null. A referential integrity is a rule that states that either each foreign key

value must match a primary key value in another relation or the foreign key value must be null.

Referential integrity ensures that a value that appears in one relation for a given set of attributes

also appears for a certain set of attributes in another relation to establish the relationship between

tables.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 39

In relational model we use primary key and foreign key to establish relationships between two

relations. Table containing primary key attribute is called master table and the table containing

foreign key attribute is called child table. Referential integrity ensures that value appeared in

foreign key attribute of child table must also appear in primary key attribute of corresponding

master table. Defining referential integrity restricts database modification operations such as insert,

delete, and update. To illustrate this consider following two relations:

 Employee Department

Eid Ename Salary Dno

E01 Ramesh 26000 D1

E02 Sohan 19000 D1

E03 Renuka 25000 D2

E04 Dina 22000 D3

 Insert: We cannot insert new tuples containing value of foreign key attribute that do not

appear in primary key attribute of master table. For example, we cannot insert new

employee that works in D4 department because the department D4 does not exists in

department table.

 Delete: We cannot delete tuples containing values of primary key attribute that also appear

foreign key attribute of related table. For example, we cannot delete tuple containing value

D2 of DNO from department table because there are employees working in department D2.

 Update: There are two cases of update operation

o Case1: We cannot change the value of primary key attribute if the child table

contains related values. For example, we cannot change value of DNO from D1 to

D5 in department table because employee table contains employees working in

department D1.

o Case 2: We cannot change value of foreign key attribute if the primary key

attribute does not contain modified value of foreign key attribute. For example, we

cannot change value of DNO from D3 to D5 in employee table because department

table does not contain department D5.

Referential Integrity in SQL

Primary keys and foreign keys can be specified as parts of the SQL create table statement as below:

Dno Dname Location

D1 IT Gwarko

D2 Finance Satdobato

D3 HR Balkumari

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 40

CREATE TABLE Books

 (

 ISBN VARCHAR (20),

 Title VARCHAR (20),

 Category VARCHAR (15),

 Price INTEGER,

 Pages INTEGER,

 Year DATE (10),

 Pid VARCHAR (5),

 PRIMARY KEY (ISBN),

FOREIGN KEY (Pid) REFERENCES Publisher (Pid) ON DELETE CASCADE ON

UPDATE CASCADE

)

 Alternatively, we can use on delete set null and on update set null.

 Also, we can use on delete set default and on update set default.

Assertions

Assertions are general purpose checks that allow the enforcement of any condition over the entire

database. Similar to CHECK but they are global Constraints. When an assertion is made, the

system tests it for validity, and tests it again on every update that may violate the assertion. This

testing may introduce a significant amount of overhead; hence assertions should be used with great

care. An assertion in SQL takes the form:

 CREATE ASSERTION <assertion-name> CHECK <predicate>

Example: The department id of manager relation is always not null since each manager works at

least one department.

CREATE ASSERTION Noallow CHECK

 (NOT EXISTS (SELECT * FROM MANAGER WHERE DeptId IS NULL));

Above assertion ensures that there is no manager who is not assigned any department at any time.

Let’s take a manager relation in which some records are inserted as

Manager

Mid Mname Address DeptId

M01 Aayan Pokhara D11

M02 Bhupi Lalitpur D22

M03 Arjun Kathmandu D11

M05 Ramesh Palpa Null

CREATE TABLE Publisher

(

 Pid VARCHAR (10),

 Pname VARCHAR (15),

 City VARCHAR (20),

 Email VARCHAR (20),

 PRIMARY KEY (Pid)

)

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 41

In the above table the department id of manager ‘Ramesh’ is NULL due to which assertion is

violated and we cannot further modify the database.

Assertions can be dropped using the DROP ASSERTION command.

 DROP ASSERTION Noallow;

Example 2: The sum of all loan amounts for each branch must be less than the sum of all account

balances at the branch.

 CREATE ASSERTION sum-constraint

 CHECK (NOT EXISTS (SELECT * FROM branch

 WHERE (SELECT SUM (amount) FROM loan

 WHERE loan.branch-name =branch.branch-name) >= (SELECT

 SUM (amount) FROM account

 WHERE loan.branch-name = branch.branch-name)));

Example 3: To specify the constraint that the salary of an employee must not be greater than the

salary of the manager of the department that the employee works for in SQL, we can write the

following assertion:

 CREATE ASSERTION Salary_Constraint

 CHECK (NOT EXISTS (SELECT * FROM Employee E, Employee M, DEPARTMENT D

WHERE E.Salary >M.Salary AND E.Dno=D.Dnumber AND D.Mgr_ssn =M.Ssn));

Difference between CHECK constraint and Assertion

A major difference between CREATE ASSERTION and the individual domain constraints and

tuple constraints is that the CHECK clauses on individual attributes, domains, and tuples are

checked in SQL only when tuples are inserted or updated. Hence, constraint checking can be

implemented more efficiently by the DBMS in these cases. The schema designer should use

CHECK on attributes, domains, and tuples only when he or she is sure that the constraint can only

be violated by insertion or updating of tuples. On the other hand, the schema designer should use

CREATE ASSERTION only in cases where it is not possible to use CHECK on attributes,

domains, or tuples, so that simple checks are implemented more efficiently by the DBMS.

Triggers

A trigger is a procedure (statement) that is automatically invoked by the DBMS in response to

specified changes to the database. A database that has a set of associated triggers is called an active

database. Triggers are useful mechanisms for alerting humans or for starting certain tasks

automatically when certain conditions are met. It is the most practical way to implement routines

and granting integrity of data. Unlike the stored procedures or functions, which have to be

explicitly invoked, these triggers implicitly get fired whenever the table is affected by the SQL

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 42

operation. For any event that causes a change in the contents of a table, a user can specify an

associated action that the DBMS should carry out. Trigger follows the Event-Condition-Action

scheme (ECA scheme). To design a trigger mechanism, we must meet following three

requirements:

 Event: A change to the database that activates the trigger.

 Condition: Trigger performs some action only if a specified condition matches at the

occurrence of the event

 Action: A procedure that is executed when the trigger is activated and its condition is true.

General form of trigger:

 CREATE TRIGGER <trigger-name>

 <Time events>

 ON <list-of-tables>

 WHEN <Predicate>

 <Action-name>

Need of Triggers

Triggers are useful mechanisms for alerting humans or for starting certain tasks automatically

when certain conditions are met.

For example, for every pre-paid account whose balance is less than or equal to 0, the account is

automatically marked as “blocked”.

 CREATE TRIGGER overdraft AFTER UPDATE ON pre-paid

 REFERENCING NEW ROW AS nrow

 FOR EACH ROW

 WHEN nrow.balance <= 0

 UPDATE pre-paid

 SET blocked = ‘T”;

Let’s take a pre-paid relation as

Pre-paid

PNO Balance Blocked

1 4000 False

2 5000 False

3 7000 False

4 2000 False

 UPDATE TABLE pre-paid

 SET Balance = Balance-4000;

If we execute this query then we get following modified Pre-paid table

PNO Balance Blocked

1 4000 T

2 5000 False

3 7000 False

4 2000 T

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 43

Query Processing and Optimization

Query Processing is a procedure of transforming a high-level query (such as SQL) into a correct

and efficient execution plan expressed in low-level language. A query processing select a most

appropriate plan that is used in responding to a database request. When a database system receives

a query for update or retrieval of information, it goes through a series of compilation steps, called

execution plan. In the first phase called syntax checking phase, the system parses the query and

checks that it follows the syntax rules or not. It then matches the objects in the query syntax with

the view tables and columns listed in the system table. Finally it performs the appropriate query

modification. During this phase the system validates the user privileges and that the query does

not disobey any integrity rules. The execution plan is finally execute to generate a response. So

query processing is a stepwise process.

Q. What do you mean by query processing? What are the various steps involved in query

processing? Explain with the help of a block diagram.

 Ans: Query processing includes translation of high-level queries into low-level expressions that

can be used at the physical level of the file system, query optimization and actual execution of the

query to get the result. It is a three-step process that consists of parsing and translation,

optimization and execution of the query submitted by the user .These steps are discussed below:

 Parsing and translation

 Optimization

 Evaluation

Fig: Query Processing steps

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 44

1. Parsing and translation

Check syntax and verify relations. Translate the query into its internal form. This is then translated

into relational algebra.

2. Optimization

The primary goal of query optimization is of choosing an efficient execution strategy for

processing a query. The query optimizer attempts to minimize the use of certain resources (mainly

the number of I/O and CPU time) by selecting a best execution plan (access plan). A query

optimization start during the validation phase by the system to validate the user has appropriate

privileges. Simply, generate an optimal evaluation plan (with lowest cost) for the query plan is

called optimization.

3. Evaluation

The query-execution engine takes an (optimal) evaluation plan, executes that plan, and returns the

answers to the query.

Query Optimization

The primary goal of query optimization is of choosing an efficient execution strategy for

processing a query. DBMS provides two different approaches to query optimization: rule based

and cost-based. With the rule-based approach, the optimizer chooses execution plans based on

heuristically ranked operations. However, the rule-based approach is being phased out in favor of

the cost-based approach, where the optimizer examines alternative access paths and operator

algorithms and chooses the execution plan with the lowest estimated cost. The estimated query

cost is proportional to the expected elapsed time needed to execute the query with the given

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 45

execution plan. The optimizer calculates this cost based on the estimated usage of resources, such

as I/O, CPU time, and memory needed. The goal of cost-based optimization is to minimize the

elapsed time to process the entire query.

Example: Transformation of an SQL-query into an RA-query and find optimized query

Employee (Eno, Ename, Title)

Project (Eno, Pno, Salary, Duration)

Query: Find the names of employees who are managing a project of duration greater than 5 years?

High level query:

SELECT Ename

FROM Employee E, Project P

WHERE E.Eno=P.Eno AND Duration>5;

Two possible transformations of the query are:

Expression 1: ΠEname (σE.Eno=P.Eno ^ Duration>5 (Employee X Project))

Expression 2: ΠEname (Employee (σDuration>5 (Project))

Expression 2 avoids the expensive and large intermediate Cartesian product, and therefore

typically is better.

Transaction Management

A transaction is a collection of several operations on the database appears to be a single unit from

the point of view of the database user. For example, a transfer of funds from a checking account

to a savings account is a single operation from the customer’s standpoint; within the database

system, however, it consists of several operations.

Database transaction is collection of SQL queries which forms a logical one task. For transaction

to be completed successfully all SQL queries has to run successfully. Database transaction

executes either all or none. For example, if your database transaction contains 4 SQL queries and

one of them fails then change made by other 3 queries will be rolled back. This way your database

always remain consistent whether transaction succeeded or failed.

Transaction is implemented in database using SQL keyword TRANSACTION, COMMIT and

ROLLBACK.

 COMMIT writes the changes made by transaction into database

 ROLLBACK removes temporary changes logged in transaction log by database

transaction.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 46

Example:

 Table: Money Transfer Transaction

Why transaction is required in database?

Database is used to store data required by real life application e.g. Banking, Healthcare, Finance

etc. All your money stored in banks is stored in database. In order to protect data and keep it

consistent any changes in this data needs to be done in transaction so that even in case of failure

data remain in previous state before start of transaction. Consider a Classical example of ATM

(Automated Tailor Machine); we all use to withdraw and transfer money by using ATM. If you

break withdrawal operation into individual steps you will find:

• Verify account details.

• Accept withdrawal request

• Check balance

• Update balance

• Dispense money

Suppose your account balance is 1000$ and you make a withdrawal request of 900$. At fourth step

your balance is updated to 900$ and ATM machine stops working due to power outage. Once

power comes back and you again tried to withdraw money you surprised by seeing your balance

just 100$ instead of 1000$. This is not acceptable by any person in the world) so we need

transaction to perform such task.

Properties of Transaction

There are four important properties of database transactions these are represented by acronym

ACID and also called ACID properties or database transaction where:

 Atomicity: Atom is considered to be smallest particle which cannot be broken into further

pieces. Database transaction has to be atomic means either all steps of transaction

completes or none of them.

 Consistency: Transaction must leave database in consistent state even if it succeed or

rollback.

 -Read balance of account A1 Read (A1)

 -Subtract 20,000 from A1 A1=A1-

20000

 -Update balance of A1 Write (A1)

 -Read balance of account A2 Read (A2)

 -Add rs 20,000 to A2

 Operation (Money Transfer) T1

 Read balance of account A1 Read (A1)

Subtract 20,000 from A1 A1=A1-20000

Update balance of A1 Write (A1)

Read balance of account A2 Read (A2)

Add Rs 20,000 to A2 A2=A2+20000

 -Update balance of A2 Write (A2)

Operation (Money Transfer) T1

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 47

 Isolation: Two database transactions happening at same time should not affect each other

and has consistent view of database. This is achieved by using isolation levels in database.

 Durability: Data has to be persisted successfully in database once transaction completed

successfully and it has to be saved from power outage or other threats. This is achieved by

saving data related to transaction in more than one places along with database.

Transaction States

Whenever a transaction is submitted to a DBMS for execution, either it executes successfully or

fails due to some reasons. During its execution, a transaction passes through various states that

are active, partially committed, committed, failed, and aborted.

 Active state - It is initial state. Transaction stays in this state while it is executing.

 Partially committed state - After the final statement has been executed, a transaction is

in partially committed state.

 Committed state - After successful completion, a transaction is in committed state.

 Failed state - After the discovery that normal execution can no longer proceed, a

transaction is in failed state.

 Terminated State – This state corresponds to the transaction leaving the system. The

transaction information that is maintained in system tables while the transaction has been

running is removed when the transaction terminates. Failed or aborted transactions may be

restarted later – either automatically or after being resubmitted by the user – as brand new

transactions.

 Fig: State diagram of Transaction

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 48

Concurrency Control

When multiple transactions are trying to access the same sharable resource, there could arise many

problems if the access control is not done properly. There are some important mechanisms to which

access control can be maintained. Earlier we talked about theoretical concepts like serializability,

but the practical concept of this can be implemented by using Locks and Timestamps. Here we

shall discuss some protocols where Locks and Timestamps can be used to provide an environment

in which concurrent transactions can preserve their Consistency and Isolation properties.

Objectives of concurrency control mechanism can be list as below:

 To enforce Isolation (through mutual exclusion) among conflicting transactions.

 To preserve database consistency through consistency preserving execution of

transactions.

 To resolve read-write and write-write conflicts.

Why concurrency Control needed?

If transactions are executed serially, i.e., sequentially with no overlap in time, no transaction

concurrency exists. However, if concurrent transactions with interleaving operations are allowed

in an uncontrolled manner, some unexpected, undesirable result may occur. Here are some typical

examples:

 The Lost Update Problem: This problem occurs when two transactions that access the

same database items have their operations interleaved in such a way that value of the data

item written by one transaction is overlapped by another transaction and hence results to

the incorrect value of the database item. Consider the example given below where two

concurrent transactions try to update inventory of product P1 simultaneously.

Example: Assume initial value of data item P1 is 300

 The Dirty Read (Temporary Update) Problem:

This problem occurs when one transaction updates a database item and then the transaction

fails for some reason. The updated item is accessed by another transaction before it is

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 49

changed back to its original value which causes transaction T2 to have dirty value of the

data item. Again consider the example where two concurrent transactions try to update

inventory of product P1 simultaneously. This example is same as above example except

that its operations are interleaved in slightly different way and first transaction is failed.

Example: Assume initial value of data item P1 is 300

Log based protocol for concurrency control

One way to ensure serializability is to access the data items in mutually exclusive manner. This

means while one transaction is accessing data item, no other transaction should be allowed to

access the data item. Lock variables are most commonly used approach for achieving mutual

exclusion. Locks are of two kinds: Binary Locks and Shared/Exclusive Locks.

Binary lock

Binary lock is a variable that can be only in two states. It is either locked or unlocked. Normally,

locked state is represented by value 1 and unlocked state is represented by value 0. A distinct lock

is associated with each database item x. If the value of the lock on data item x is 1, item x cannot

be accessed by a database operation that requests the item. If the value of the lock on x is 0, the

item can be accessed when requested. Two operations, lock and unlock, are used with binary

locking and these two operations must be implemented atomically.

If the simple binary locking scheme described above is used, every transaction must obey the

following rules:

1. A transaction T must issue the operation lock(x) before performing any read(x) or

write(x) operations.

2. A transaction T must issue the operation unlock(x) after finishing all read(x) and write(x)

operations.

3. A transaction T will not issue a lock(x) operation if the data item x is already locked by

it.

4. A transaction T will not issue an unlock(x) operation if the data item x is not locked by it.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 50

Shared/Exclusive Lock

This type of lock is also called multiple mode lock. It is a variable that can be in any of three states:

unlocked, read-locked (shared lock) and write-locked (exclusive lock). If a transaction acquires

shared lock (read-lock) on data item x then other transactions can also acquire shared lock on data

item x. But no transaction can acquire exclusive lock (write-lock) on data item x. On the other

hand, if a transaction acquires exclusive lock (write-lock) on data item x then no other transactions

can acquire shared/exclusive lock (read/write lock) on the data item.

When shared/exclusive locking scheme discussed above is used, the system must enforce the

following rules:

1. A transaction T must issue the operation read_lock(x) or write_lock(x) before performing

read(x) operation.

2. A transaction T must issue the operation write_lock(x) before performing write(x)

operation.

3. A transaction T must issue the operation unlock(x) after finishing all its read(x) and

write(x) operations.

4. A transaction T will not issue a read_lock(x) operation if it already holds a shared lock

(read-lock) or exclusive lock (write-lock) on item x.

5. A transaction T will not issue a write_lock(x) operation if it already holds a shared lock

(read-lock) or exclusive lock (write-lock) on item x.

6. A transaction T will not issue an unlock(x) operation if it does not hold a shared lock (read-

lock) or exclusive lock (write-lock) on item x.

Two-Phase Locking Protocol

The two-phase locking protocol is used to ensure the serializability in Database. This protocol is

implemented in two phase. Growing Phase and Shrinking Phase.

 Growing Phase: In this phase we put read or write lock based on need on the data. In this

phase we does not release any lock. Remember that all lock operation must precede first

unlock operation appeared in a transaction.

 Shrinking Phase: This phase is just reverse of growing phase. In this phase we release

read and write lock but doesn't put any lock on data. Unlock operations can only appear

after last lock operation.

For a transaction these two phases must be mutually exclusive. This means, during locking phase

unlocking phase must not start and during unlocking phase locking phase must not begin.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 51

Time-Stamp Based Protocol

The most commonly used concurrency protocol is time-stamp based protocol. This protocol uses

either system time or logical counter to be used as a time-stamp. Lock based protocols manage the

order between conflicting pairs among transaction at the time of execution whereas time-stamp

based protocols start working as soon as transaction is created. Every transaction has a time-stamp

associated with it and the ordering is determined by the age of the transaction. A transaction created

at 0002 clock time would be older than all other transaction, which come after it. For example, any

transaction 'y' entering the system at 0004 is two seconds younger and priority may be given to the

older one.

A timestamp can be implemented in two ways. The simplest one is to directly assign the current

value of the clock to the transaction or the data item. The other policy is to attach the value of a

logical counter that keeps incrementing as new timestamps are required.

The concurrency control algorithm must check whether convicting operations violate the time

stamp ordering in the following two cases.

Case I: Transaction T Issues Write(x) Operation

 If ReadTS(x) > TS(T) or if WriteTS (x) > TS(T), then abort and roll back T and reject the

Operation. This should be done because some younger transaction with a time stamp

greater than TS(T) – and hence after T in the timestamp ordering –has already read or

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 52

written the value of item x before T had a chance to write x, thus violating the timestamp

ordering.

 If the above condition is not satisfied then execute the Write(x) operation and set

WriteTS(x) to TS(T).

Case II: Transaction T Issues Read(x) Operation

 If WriteTS (x) >TS(T), then abort and rollback and reject the operation. This should be

done because some younger transaction have timestamp greater than TS (T) – and hence

after T in the Timestamp ordering-has already written the value of item x before T had a

chance to read x.

 If write TS(x) < = TS (T), then execute the Read(x) operation of T and set ReadTS(x) to

the larger to TS(T) and the current ReadTS(x).

Example: Assume timestamps of T1 and T2 is 100 and 110 respectively and initial value of x is

500

Database performance tuning

Although newer relational databases and faster hardware run most SQL queries with a significantly

small response time, there is always room for improvement. After a database is deployed and is in

operation, actual use of the applications, transactions, queries, and views reveals factors and

problem areas that may not have been accounted for during the initial physical design. Thus

database tuning is a process of minimizing response time or improving performance by using

various optimization techniques during designing, querying, transactions etc.

The goals of tuning are as follows:

 To make applications run faster.

 To improve (lower) the response time of queries and transactions.

 To improve the overall throughput of transactions.

Tuning a database involves dealing with the following types of problems:

 How to avoid excessive lock contention, thereby increasing concurrency among

transactions.

 How to minimize the overhead of logging and unnecessary dumping of data.

 How to optimize the buffer size and scheduling of processes.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 53

 How to allocate resources such as disks, RAM, and processes for most efficient utilization.

Tuning of database may occur in following sections:

 Tuning of Index

 Tuning of database design

 Tuning of query

Index tuning means reconstructing of index if overflow of data may occur in the table. Tuning of

database design means reconstructing overall structure of database and keep in normal form if we

need to insert additional requirements to the existing database system. And tuning of query means

use less coasty clauses during writing SQL of given statement.

Distributed Database

A distributed database (DDB) is a collection of multiple, logically interrelated databases

distributed over a computer network. Distributed databases bring the advantages of distributed

computing to the database management domain. It consists of a number of processing elements,

not necessarily homogenous, that are interconnected by a computer network, and that cooperate in

performing certain assigned tasks. As a general goal, distributed computing systems partition a

big, unmanageable problem into smaller pieces and solve it effectively in a coordinated manner.

It provides two major benefits: more computer power can be used to solve a complex task and

each autonomous processing element can be managed independently and develop its own

applications.

Distributed Database Management System

A distributed database management system (D–DBMS) is the software that manages the DDB and

provides an access mechanism that makes this distribution transparent to the users. It consists of a

single logical database that is split into a number of fragments. Each fragment is stored on one or

more computers under the control of a separate DBMS, with the computers connected by a

communications network. Each site is capable of independently processing user requests that

Communications neteork

Site 5
Site 1

Site 2

Site 4

Site 3

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 54

require access to local data and is also capable of processing data stored on other computers in the

network.

Functions of Distributed database system

 Distribution and Network transparency

Users do not have to worry about operational details of the network. There is Location

transparency, which refers to freedom of issuing command from any location without

affecting its working. Then there is naming transparency, which allows access to any

names object (files, relations, etc.) from any location.

 Replication transparency: It allows to store copies of a data at multiple sites for better

availability, performance, and reliability making the user unaware of the existence of

copies.

 Fragmentation transparency: Allows to fragment a relation horizontally (create a subset

of tuples of a relation) or vertically (create a subset of columns of a relation) making the

user unaware of the existence of fragments.

 Increased reliability and availability: Reliability refers to system live time, that is,

system is running efficiently most of the time. Availability is the probability that the

system is continuously available (usable or accessible) during a time interval. A distributed

database system has multiple nodes (computers) and if one fails then others are available

to do the job.

 Improved performance: A distributed DBMS fragments the database to keep data closer

to where it is needed most. This reduces data management (access and modification) time

significantly.

 Easier expansion (scalability): Allows new nodes (computers) to be added anytime

without chaining the entire configuration.

 Autonomy: Gives the users tighter control over their own local database.

Additional Functions

 Keeping track of data: The ability to keep track of the data distribution, fragmentation,

and replication by expanding the DDMS catalog.

 Distributed query processing: The ability to access remote sites and transmit queries and

data among the various sites via a communication network.

 Distributed transaction management: The ability to device execution strategies for

queries and transactions that access data from more than one site and to synchronize the

access to distributed data and maintain integrity of the overall database.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 55

 Replicated data management: The ability to decide which copy of a replicated data item

to access and to maintain the consistency of copies of a replicated data item.

 Distributed database recovery: The ability to recover from individual site crashes and

from new type failures such as the failure of communication link.

 Security: Distributed transactions must be executed with the proper management of the

security of the data and the authorization/access privileges of users.

 Distributed directory (catalog) management: A directory contains information

(metadata) about data in the database. The directory may be global for the entire DDB, or

local for each site. The placement and distribution of the directory are design and policy

issues.

These above functions (in addition to those of a centralized DBMS) themselves increase the

complexity of DDBMS over a centralized DBMS.

Data Fragmentation, Replication, and Allocation Techniques

Data Fragmentation: A process of splitting a relation into logically related and correct parts.

Fragmentation consists of breaking a relation into smaller relations or fragments, and storing the

fragments (instead of the relation itself), possibly at different sites. In horizontal fragmentation,

each fragment consists of a subset of rows of the original relation. In vertical fragmentation, each

fragment consists of a subset of columns of the original relation. A relation can be fragmented in

three ways:

 Horizontal Fragmentation

 Vertical Fragmentation

 Mixed Fragmentation.

Horizontal Fragmentation:

A horizontal fragment of a relation is a subset of the tuples in that relation. The tuples that belong

to the horizontal fragment are specified by a condition on one or more attributes of the relation.

Horizontal fragmentation divides a relation “horizontally” by grouping rows to create subsets of

tuples, where each subset has a certain logical meaning. These fragments can then be assigned to

different sites in the distributed system. Derived horizontal fragmentation applies the partitioning

of a primary relation to other secondary relations which are related to the primary via a foreign

key.

It is a horizontal subset of a relation which contains those of tuples which satisfy selection

conditions specified in the SELECT operation of the relational algebra on single or multiple

attributes. Consider the Customer relation with selection condition (sex= male). All tuples satisfy

this condition will create a subset which will be a horizontal fragment of Customer relation.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 56

 Customer

Horizontal Fragmentation are subsets of tuples (rows)

 σsex= male(customer)

Fragment 1

Fragment 2

 σsex=female(customer)

Vertical Fragmentation:

Vertical fragmentation divides a relation “vertically” by columns. A vertical fragment of a relation

keeps only certain attributes of the relation. It is a subset of a relation which is created by a subset

of columns. Thus a vertical fragment of a relation will contain values of selected columns. There

is no selection condition used in vertical fragmentation. All vertical fragments of a relation are

connected by using PROJECT operation of the relational algebra.

Example:

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 57

Vertical fragmentation is subset of attributes

Fragment 1

Fragment 2

To combine all the vertically fragmented tables we need to perform join operation on the

fragments.

 SELECT customer_id, Name, Area, Sex, Payment_type

 FROM Fragment 1 NATURAL JOIN Fragment 2;

Mixed (Hybrid) Fragmentation

We can intermix the two types of fragmentation, yielding a mixed fragmentation. The original

relation can be reconstructed by applying UNION and OUTER UNION (or OUTER JOIN)

operations in the appropriate order. In general a fragment of a relation can be specified by

SELECT-PROJECT combination of operations which is represented by L (σC (R)).

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 58

Data Replication and Allocation

Replication is useful in improving the availability of data. The most extreme case is replication of

the whole database at every site in the distributed system, thus creating a fully replicated distributed

database. This can improve availability remarkably because the system can continue to operate as

long as at least one site is up. It also improves performance of retrieval for global queries because

the results of such queries can be obtained locally from any one site; hence, a retrieval query can

be processed at the local site where it is submitted, if that site includes a server module. The

disadvantage of full replication is that it can slow down update operations drastically, since a single

logical update must be performed on every copy of the database to keep the copies consistent. This

is especially true if many copies of the database exist. Full replication makes the concurrency

control and recovery techniques more expensive than they would be if there was no replication.

In partial replication some selected part is replicated to some of the sites. Data replication

is achieved through a replication schema.

The process of assigning each fragment to a particular site in a distributed system is called

data distribution (or data allocation). This is relevant only in the case of partial replication or

partition. The selected portion of the database is distributed to the database sites. The choice of

sites and the degree of replication depend on the performance and availability goals of the system

and on the types and frequencies of transactions submitted at each site. For example, if many

updates are performed, it may be useful to limit replication.

Types of Distributed Database System

 Homogeneous distributed database system

 Heterogeneous distributed database system

If all servers (or individual local DBMSs) use identical software and all users (clients) use identical

software, the DDBMS is homogenous; otherwise, it is heterogeneous.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 59

 Unit 2

The Entity Relationship, Extended Entity Relationship Model

And Object Model

E-R Model

It is developed to facilitate database design by allowing the specification of an enterprise schema,

which represents overall logical structure of database. E-R model is useful in mapping the

meanings and interactions of real word objects. Basic objects called entities. Relationship among

objects called relationship. E-R model keep the record of entities, their attributes and relationship

among those entities.

Symbols Used in ER Diagram

Relationship

Multi-valued attribute

Primary key attribute

E E

A

 A A

R

R

A

A

R
R

R
E

Associative entity
Entity set

Weak entity
Attribute

Derived attribute

Identifying Relationship
Discriminating attribute of

weak entity set

Many to one

relationship

Many to many

relationship

One to one

relationship
Total

participation

ISA (specialization or

generalization)

ISA

E

Total
generalization

R

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 60

E-R data model consists of three basic notions.

a. Entity sets

b. Relationship sets

c. Attributes

Entity Sets

An entry set is a set of entities of the same type that share the same properties, or attributes for

example the set of all persons who are customer at a given bank can be defined as the entity set

customer, loan etc.

Attributes

An entity is represented by set of characteristics called attributes. Each attributes has set of values

called domain. E.g. possible attributes of loan entity set has loan number and loan amount similarly

the domain of attribute might be a set of a positive integers.

Types of attributes

1.Simple Vs. Composite:

Simple attributes are these they are not divided into sub parts. Composite attributes can be divided

into subpart. A composite attribute is made of one or more simple or composite attributes. E.g.

name is made of first name, middle name and last name and where name is composite attribute

and first name, middle name and last name are simple attribute. It may come in hierarchy.

2. Single valued Vs. multivalued

A single valued attribute is described by one value e.g. age of a person. A multivalued attribute is

described by many values e.g. color attribute of a multicolored bird.

3. Stored Vs. Derived

An attribute which value can be derived from the value of other attribute is called a derived

attribute e.g. age can be derived from date of birth and current date. If this is not a case then called

stored values e.g. roll no.

Customer address

Street City State Zip code

State name Apt number

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 61

4. Null attributes

Attributes that do not have any applicable values are said to have null values. They are also called

unknown and missing values. For example, if a social security value of a particular customer is

null, we assume, the value is missing.

Fig: E-R diagram with composite, multivalued, and derived attributes

Descriptive Attributes

A relationship set may also have attributes called descriptive attributes. For example, the depositor

relationship set between entity sets customer and account may have the attribute access-date. See

in fig below. A relationship instance in a given relationship set must be uniquely identifiable from

other relationship instances, without using descriptive attributes.

Relationship sets

A relationship is an association between several entities. A relationship set is a set of relationships

of the same type. Mathematically For non-distinct entity set n  2. If E1, E2… En are entity sets

then relationship set R is the subset of {(e1, e2, e3… en) / e1 E1, e2E2………enEn}.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 62

Strong and Weak Entity Set

An entity set may not have sufficient attributes to form a primary key. Such an entity set is termed

as a weak entity set. An entity set that has a primary key is termed as a strong entity set.

For a weak entity set to be meaningful, it must be associated with another entity set, called the

identifying or owner entity set, using one of the key attribute of owner entity set. The weak entity

set is said to be existence dependent on the identifying entity set. The relationship associating the

weak entity set with the identifying entity set is called the identifying relationship. The identifying

relationship is many-to-one form the weak entity set to the identifying entity set, and the

participation of the weak entity set in the relationship set is total.

Although a weak entity set does not have a primary key, we use discriminator (or partial

key) as a set of attributes that allows the distinction to be made among all the entities in the weak

entity set.

In the figure below, payment-number is partial key and (loan-number, payment-number) is

primary key for payment entity set.

Constraints on ER Model

Relationship sets in ER model usually have certain constraints that limit the possible combinations

of entities that may involve in the corresponding relationship set. Database content must confirm

these constraints. The most important constraints are: mapping cardinalities and participation

constraints.

Mapping Cardinality Constraints

ER model constraint that describes maximum number of possible relationship occurrences for an

entity set participating in a given relationship type is called mapping cardinality. It is also termed

as cardinality ratio. On the basis of cardinality ratio, relationships can be categorized into: One-to-

One, One-to- Many, Many-to-One, and Many-to-Many. We express cardinality constraints by

drawing either a directed line (), signifying “one,” or an undirected line (—), signifying “many,”

between the relationship set and the entity set.

1. One-to-One Relationship

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 63

If every entity in A is associated with at most one entity in B and vice-versa then the relationship

is called one-to-one relationship. The following figure shows one to one mapping cardinality

between entity sets A and B. For example every bank has only one CEO and a person can be CEO

of only one bank therefore it shows one-to-one relationship between Bank and CEO.

2. One-to-Many Relationship

If an entity in A can be associated with any number (zero or more) of entities in B but every entity

in B can be associated with at most one entity in A, and then it is called one-to-many relationship.

For example, a mother can have any number of children but children can have only one mother

therefore it shows one-to-many relationship between mother and child.

3. Many-to-One Relationship

If very entity in A can be associated only one of entities in B but an entity in B can be associated

with any number of entities in A, then it is called many-to-one relationship. For example, a Book

is always published by only one publisher but a publisher can publish any number of books

therefore it shows many-to-one relationship between books and publication.

4. Many-to-Many Relationship

If an entity in A can be associated with any number of entities in B and vice versa then it is called

many-to-many relationship. For example, a student can enroll into more than one subject and a

subject can be enrolled by many students therefore it shows many-to-many relationship between

students and courses.

Participation Constraints

Constraint on ER model that determines whether all or only some entity occurrences participate in

a relationship is called participation constraint. It specifies whether the existence of an entity

depends on its being related to another entity via the relationship type. There are two types of

participation constraints:

 Total Participation Constraints and

 Partial Participation Constraints.

The participation of an entity set A in a relationship set R is said to be total if every entity in A

participates in relationship at least once.

On the other hand, the participation of an entity set A in a relationship set R is said to be partial

if only some of the members of an entity set A participate in relationship.

Total participation and partial participation is denoted by single line and double line in ER

diagrams respectively.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 64

For example, consider Customer and Loan entity sets in a banking system, and a relationship set

borrower between them indicates that only some of the customers have Loan but every Loan

should be associated with some customer. Therefore, there is total participation of entity set Loan

in the relationship set borrower but participation of entity set customer is partial in relationship set

borrower. Here, Loan entity set cannot exist without Customer entity set but existence of Customer

entity set is independent of Loan entity set.

Keys

Set of one or more attributes whose values are distinct for each individual entity in the entity set

is called key, and its values can be used to identify each entity uniquely. There are different types

of keys which are:

 Super key

 Candidate key

 Primary key

 Composite key

 Foreign key

Super Key

A supper key is a set of one or more attributes allow us to identify uniquely in entity set. E.g. social

security number attribute of a entity set customer is distinguish from one customer entity to

another. Similarly, customer name and social-security is a supper key for an entity set customer.

The customer name of entity customer is not super key because several people might have the

same name.

Candidate key

A candidate key of an entity set is a minimal super key. That is a super key which does not have

any proper subset is called candidate key. For example, student-id is candidate key of the entity

set student but set of attributes {roll-number, name, program, semester, section} is not candidate

key of the entity set student because it has proper subset {roll-number, program, semester section}

which is also key. All candidate keys are super keys but vice versa is not true. Any candidate key

other than the one chosen as a primary key is known as alternate key.

Primary key

A primary key is a candidate key that is chosen by the database designer as the principle means of

uniquely identifying entities within an entity set. There may exist several candidate keys, one of

the candidate keys is selected to be the primary key. For example, entity set student have two

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 65

candidate keys: student-id, and {roll-number, program, semester section}, if database designer

chooses student-id for the purpose of uniquely identifying entities within entity set then it becomes

primary key. Primary key must satisfy following two characteristics:

 It cannot be null

 It cannot be duplicate

Composite Key

If a primary key contains more than one attribute, then it is called composite key. For example, if

database designer chooses student-id as primary key then it not composite key but if database

designer chooses {roll-number, program, semester section} as primary key then it is also called

composite key.

Foreign key

A foreign key (FK) is an attribute or combination of attributes that is used to establish and enforce

relationship between two relations (table). A set of attributes that references primary key of another

table is called foreign key. For example, if a student enrolls in program then program-id (primary

key of relation program) can be used as foreign key in student relation,

Student

Program-ID Program-

Name

C002 BBA

C021 B. Sc CSIT

C112 BIM

C321 B. ed.

 Fig: Primary key and foreign key

Complex Data Types

Any data that does not fall into the traditional field structure (alpha, numeric, dates) of a relational

DBMS are called complex data. Examples of complex data types are bills of materials, word

processing documents, maps, time-series, images and video. In a relational DBMS, complex data

types are stored in a large object (LOB), but either the client application or some middleware is

S-ID Name Address Program-ID

S-12 Pawan Joshi C002

S-14 Yamman Karki C021

S-51 Abin Saud C321

S-11 Binak Singh C112

 Relationships

 Program

Foreign Keys

 Primary Keys

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 66

required to process the data. In an object DBMS or an object-relational DBMS, complex data types

are stored as objects that are integrated into and activated by the DBMS.

Complex data types are those that include record type and collections which are used to handle

data in record format or in an array format. A complex data type is usually a composite of other

existing data types. For example, you might create a complex data type whose components include

built-in types, opaque types, distinct types, or other complex types. An important advantage that

complex data types have over user-defined types is that users can access and manipulate the

individual components of a complex data type.

Extended E-R model (EER model)

The ER modeling concepts are not sufficient for representing new database applications, which

have more complex requirements than do the more traditional applications. To model modern

complex systems such as, such as databases for engineering design and manufacturing

(CAD/CAM), telecommunications, complex software systems, and Geographic Information

Systems (GIS), among many other applications, it is not enough. Thus, modeling of such systems

can be made easy with the help of extended ER model. The EER model includes all of the concepts

introduced by the ER model. Additionally it includes the concepts of a subclass and super class,

along with the concepts of specialization and generalization. There are basically four concepts of

EER-Model:

 Subclass/super class relationship

 Specialization and Generalization

 categories (UNION types)

 Aggregation

Subclass/super class relationship

An entity set may have a number of sub-groupings of its entities that are meaningful. Here, the

entity set is called superclass while the subgroupings are known as subclasses of the superclass.

We call the relationship between a superclass and any one of its subclass a superclass/subclass or

simply class/subclass relationship. An entity that is a member of subclass inherits all attributes

Downloaded from CSIT Tutor

http://en.wikipedia.org/wiki/Subclass_(computer_science)
http://en.wikipedia.org/wiki/Superclass_(computer_science)
http://en.wikipedia.org/wiki/Inheritance_(computer_science)#Specialization
http://en.wikipedia.org/wiki/Generalization

--
By Bhupendra Singh Saud ADBMS 67

from its superclass. That is, there is type inheritance in subclass. The entity also inherits all the

relationships in which the superclass participates.

Consider the example of entity set college. We can divide the entity set college into two

subgroups: constituent colleges and affiliated colleges. Further affiliated colleges can be divided

into two subgroups: permanently affiliated colleges and temporarily affiliated colleges. Here the

entity set college is superclass of subgroups entity sets constituent colleges and affiliated colleges

and the subgroups are called subclasses of the superclass entity set college. In ER diagram we can

represent superclass/subclass relationship by using ISA triangle as below:

Specialization and Generalization

The process of defining a set of subclasses from a superclass is known as specialization. The set

of subclasses is based upon some distinguishing characteristics of the entities in the superclass. It

is a top-down design process. For Example, the entity set person can be specialized into entity sets

employee, and customer. Further, on the basis of job type the entity set employee can be divided

into entity sets manager, teller, typist etc. Thus, specialization may create hierarchy. Attributes of

a subclass are called specific attributes. For example, the subclass entity set may have attribute

‘typing-speed’.

There may have several specializations of the same superclass. For example, on the basis of pay

type the entity set employee can be specialized entity sets “Full-time employees” and “Part-time”

employees.

Generalization is the reverse of the specialization. Several classes with common features

are generalized into a super class; original classes become its subclasses. It is a bottom-up design

process. Here, we combine a number of entity sets that share the same features into a higher-level

entity set. Designer applies generalization is to emphasize the similarities among the entity sets

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 68

and hide their differences. Specialization and generalization are simple inversions of each other;

they are represented in an E-R diagram in the same way. The terms specialization and

generalization are used interchangeably.

Categories (Union Types)

It is possible that single superclass/subclass relationship has more than one super classes

representing different entity types. In this case, the subclass will represent a collection of objects

that is the union of distinct entity types; we call such a subclass a union type or a category.

A category has two or more super classes that may represent distinct entity types, whereas non-

category superclass/subclass relationships always have a single superclass.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 69

Aggregation

Sometimes we have to model a relationship between a collection of entities and relationships.

Basic ER model cannot express relationships among relationship sets and relationships between

relationship sets and entity sets. Aggregation is an abstraction through which relationship sets are

treated as high-level entity sets and can participate in relationship sets. It allows relationships

between relationships.

 Fig: Aggregation

Constraints on Generalization/Specialization

To model real world more accurately by using ER diagram we need to keep certain constraints on

it. Constraints on which entities can be members of a given lower-level entity set are discussed

below.

 Condition defined constraint

 Disjoint vs. Overlap Constraints

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 70

 A total specialization vs. a partial specialization

Condition defined constraint

If we can determine exactly those entities that will become members of each subclass by a

condition, the subclasses are called predicate-defined (or condition-defined) subclasses. Here,

condition is a constraint that determines subclass members. For example, if the EMPLOYEE entity

type has an attribute JobType, we can specify the condition of membership in the SECRETRY

subclass by a condition (JobType=“secretary”), which we call defining predicate of the subclass.

We display predicate-defined subclass by writing the predicate condition next to the line that

connects the subclass to the specialization circle.

If all subclasses have membership condition on the same attribute of the superclass, then it is called

an attribute defined-subclass. And, the attribute is called the defining attribute.

Disjoint vs. Overlap Constraints

If an entity can be a member of at most one of the subclasses of the specialization, then the

subclasses are called disjoint. In EER diagram, d in the circle stands for disjoint. For example,

specialized subclasses ‘Electronic Book’ and ‘Paperback Book’ are disjoint subclasses of the super

class entity set Book.

If the same entity may be a member of more than one subclass of the specialization, then the

subclasses are said to be overlapped. For example, specialized subclasses ‘Action Movie’ and

‘Comedy Movie’ are overlapped subclasses of the super class entity set Movie. This is because

there also movies called “Action Comedy” that belong both of the above subclasses.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 71

Fig: Disjoint constraint

 Fig: Overlapped constraint

A total specialization vs. a partial specialization

A total specialization constraint specifies that every entity in the superclass must be a member of

some subclass in the specialization. It is represented by a double line connecting the superclass to

the circle.

A partial specialization allows an entity not to belong to any of the subclasses, using a single line

in EER. e.g., if some EMPLOYEE entities, for example, sales representatives, do not belong to

any of the subclasses {SECRETARY, ENGINEER, TECHNICIAN}, then the specialization is

partial. It is represented by a single line connecting the superclass to the circle. Partial

generalization is the default.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 72

Some insertion/deletion rules for specialization/generalization

 Deleting an entity from a superclass

o it is automatically deleted from all the subclasses to which it belongs

 Inserting an entity in a superclass

o it is mandatorily inserted in all predicate-defined (or attribute-defined) subclasses

for which it satisfies the defining predicate

 Inserting an entity in a superclass of a total specialization

o it is mandatorily inserted in at least one of subclasses

Example: The UNIVERSITY Database Example

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 73

ER-to-Relational Mapping Algorithm

 Step 1: Mapping of Regular Entity Types

 Step 2: Mapping of Weak Entity Types

 Step 3: Mapping of Multivalued attributes.

 Step 4: Mapping of Composite attributes.

 Step 5: Mapping of Binary 1:1 Relation Types

 Step 6: Mapping of Binary 1: N Relationship Types.

 Step 7: Mapping of Binary M: N Relationship Types.

 Step 8: Mapping of N-ary Relationship Types.

Mapping EER Model constructs to-Relational Algorithm

Step 1: Mapping Specialization or Generalization to relational model

Step 2: Mapping of Union Types (Categories) to relational model

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 74

Step 3: Mapping aggregation to relational model

Mapping regular entity set to relational model

An entity set is mapped to a relation in a straightforward way: Each simple attribute of the entity

set becomes an attribute (column) of the table and primary key of the entity set becomes primary

key of the relation. Domain of each attribute of the relation must be known.

Mapping of Weak Entity Types

A weak entity set does not have its own primary key and always participates in one-to-many

relationship with owner entity set and has total participation. For a weak entity set create a relation

that contains all simple attributes (or simple components of composite attributes). In addition,

relation for weak entity set contains primary key of the owner entity set as foreign key and its

primary key is formed by combining partial key (discriminator) and primary key of the owner

entity set.

Example: Consider the weak entity set ‘Edition’ with two attributes edition_no and type, where

edition_no is partial key.

Mapping of Multivalued and composite attributes

If an entity has composite attributes, no separate attribute (column) is created for composite

attribute itself rather attributes (columns) are created for component attributes of the composite

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 75

attribute. For a multivalued attribute, separate relation is created with primary key of the entity set

and multivalued attribute itself.

Mapping of Binary 1:1 Relation Types

For a binary one to one relationship set separate relation is not created rather primary key of an

entity set is included in relation for another entity set as a foreign key. It is better to include foreign

key into the entity set with total participation in the relationship.

Mapping of Binary 1: N Relation Types

For binary one-to-many relationship identify the relation that represent the participating entity type

at the N-side of the relationship type and then include primary key of one side entity set into many

side entity set as foreign key. Separate relation is created for the relationship set only when the

relationship set has its own attributes

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 76

Mapping of Binary M: N Relation Types

For a binary Many-to-Many relationship type, separate relation is created for the relationship type.

Primary key for each participating entity set is included as foreign key in the relation and their

combination will form the primary key of the relation. Besides this, simple attributes of the many-

to-many relationship type (or simple components of composite attributes) is included as attributes

of the relation.

Mapping of N-ary Relationship Types

For each n-ary relationship set for n>2, a new relation is created. Primary keys of all participating

entity sets are included in the relation as foreign key attributes. Besides this all simple attributes

of the n-ary relationship set (or simple components of composite attributes) are included as

attributes of the relation.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 77

Representing Specialization/Generalization

There are two approaches for translating ER diagrams with specialization or generalization into

relations.

 A relation is created for higher level entity set using above discussed methods and then

separate relation is created for each of the lower level entity sets. Relation for a subclass

entity set includes all of its attributes and key attributes of superclass entity set.

 Another approach is to create relations only for lower level entity sets. Here, relation for a

subclass entity set includes all attributes of superclass entity set and all of its own attributes.

This approach is possible only when subclasses are disjoint and complete

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 78

Representing Aggregation

To represent aggregation, create a table containing

 Primary key of aggregated relationship

 Primary key of the associated entity set

 Any descriptive attributes of the relationship set

Mapping of Union Types (Categories) to relational model

For mapping a category whose defining super-classes have different keys, it is customary to

specify a new key attribute, called a surrogate key, when creating a relation to correspond to the

category. The keys of the defining classes are different, so we cannot use any one of them

exclusively to identify all entities in the category. In our example in Figure below, we create a

relation OWNER to correspond to the OWNER category, and include any attributes of the category

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 79

in this relation. The primary key of the OWNER relation is the surrogate key, which we called

Owner_id. We also include the surrogate key attribute Owner_id as foreign key in each relation

corresponding to a superclass of the category, to specify the correspondence in values between the

surrogate key and the key of each superclass. Notice that if a particular PERSON (or BANK or

COMPANY) entity is not a member of OWNER, it would have a NULL value for its Owner_id

attribute in its corresponding tuple.

Two categories (union types): OWNER and REGISTERED_VEHICLE are shown in fig. below.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 80

Object Modeling Using UML Class Diagrams

Object modeling methodologies, such as UML (Universal Modeling Language) and OMT (Object

Modeling Technique) are becoming increasingly popular. Although these methodologies were

developed mainly for software design, a major part of software design involves designing the

databases that will be accessed by the software modules. Hence, an important part of these

methodologies—namely, the class diagrams are similar to EER diagrams in many ways.

Unfortunately, the terminology often differs. We briefly review some of the notation, terminology,

and concepts used in UML class diagrams, and compare them with EER terminology and notation.

Figure below shows how the COMPANY ER database schema can be displayed using UML

notation.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 81

In UML class diagrams, a class is displayed as a box that includes three sections: the top section

gives the class name; the middle section includes the attributes for individual objects of the class;

and the last section includes operations that can be applied to these objects. Operations are not

specified in EER diagrams. Consider the EMPLOYEE class. Its attributes are Name, Ssn, Bdate,

Sex, Address, and Salary. The designer can optionally specify the domain of an attribute if desired.

A multivalued attribute will generally be modeled as a separate class, as illustrated by the

LOCATION class Relationship types are called associations in UML terminology, and

relationship instances are called links. A binary association (binary relationship type) is

represented as a line connecting the participating classes (entity types), and may (optional) have a

name. A relationship attribute, called a link attribute, is placed in a box that is connected to the

association’s line by a dashed line.

In UML, there are two types of relationships: association and aggregation. Figure below

illustrates the UML notation for generalization/specialization by giving a possible UML class

diagram corresponding to the EER diagram

A UML class diagram corresponding to the EER diagram shown in Figure above is represented

by following diagram.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 82

Assignment

1. Construct ER diagram and then translate into a set of Nepal premier database (NPL)

 Requirements:

 The NPL has many teams,

 Each team has a name, a city, a coach, a captain, and a set of players,

 Each player belongs to only one team,

 Each player has a name, role, a skill level, and a set of injury records

 A team captain is also a player

 A game is played between two teams (referred to as host_team and guest_team) and has a

date (such as May 11th, 1999).

2. Construct EER diagram and then map into a set of University Database.

 Requirements:

 Professors have an Citizenship number, a name, an age, a rank, and a research specialty.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 83

 Projects have a project number, a sponsor name, a starting date, an ending date, and a

budget.

 Graduate students have Citizenship number, a name, an age, and a degree program (e.g.,

M.S. Or Ph.D.).

 Each project is managed by one professor (known as the project’s principal investigator).

 Each project is worked on by one or more professors (known as the project’s co

investigators).

 Professors can manage and/or work on multiple projects.

 Each project is worked on by one or more graduate students (known as the project’s

research assistants).

 When graduate students work on a project, a professor must supervise their work on the

project. Graduate students can work on multiple projects, in which case they will have a

(potentially different) supervisor for each one.

 Departments have a department number, a department name, and a main office.

 Departments have a professor (known as the chairman) who runs the department.

 Professors’ work in one or more departments, and for each department that they work in, a

time percentage is associated with their job.

 Graduate students have one major department in which they are working on their degree.

1. Construct an ER diagram for a car-insurance company whose customers own one or more cars

each. Each car has associated with it zero to any number of recorded accidents.

2. Construct an ER diagram for a hospital with a set of patients and a set of doctors. Associate

with each patient a log of the various tests and examinations conducted.

3. Construct an ER diagram of the library system in your college.

4. Construct an ER diagram to maintain data about students, instructors, semester, and courses in

a college.

5. Construct an ERD to record the marks that students get in different exams of different course

offerings.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 1

Overview of Object Oriented Concepts

Object oriented databases try to maintain a direct correspondence between real-world and database

objects so that the objects do not lose their integrity and identity and can easily be identified and

operated upon. Object has two compounds and they are:

 State (value) and

 Behavior (operations)

In an object-oriented database, objects may have an object structure of arbitrary complexity in

order to contain all of the necessary information that is required describes the object. On the

contrary in traditional database systems, information about a complex object is often scattered over

many relations or records leading to loss of direct correspondence between a real-world object and

its database representation. The internal structure of an object in OOPLs includes the specification

of instance variables which holds the value that defines the internal state of the object. An instance

variable is similar to the concept of an attribute except for the instance variables may be

encapsulated within the object and thus are not necessarily visible to external users. Some OO

models insist that all operations a user can apply to an object must be predefined. This forces to a

complete encapsulation of objects.

Why we need object oriented database?

We need object oriented database due to mainly following two reasons:

 Application which required modeling of complex objects:

Traditional data models and systems have been quite successful in developing the database

technologies required for many traditional business database applications. However, they have

certain shortcomings when more complex database applications must be designed and

implemented—for example, databases for engineering design and manufacturing (CAD/CAM

and CIM1), scientific experiments, telecommunications, geographic information systems, and

multimedia. These newer applications have requirements and characteristics that differ from

 Unit 3

Emerging Database Management System Technologies

 By

 Bhupendra Singh Saud

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 2

those of traditional business applications, such as more complex structures for stored objects;

the need for new data types for storing images, videos, or large textual items; longer-duration

transactions; and the need to define nonstandard application-specific operations.

 Vast increase in the use of object-oriented programming languages for developing software

applications.

 To maintain a direct correspondence between real-world and database objects

Classes and objects

A class is understood as an entity that has a well-defined role in the application domain. An object

is referred to as a particular instance of a class. An object has structure or state (variables) and

methods (behavior/operations). An object is described by four characters and they are:

 Identifier: A system-wide unique id for an object.

 Name: An object may also have a unique name in database which is optional.

 Lifetime: It determines if the object is persistent or transient.

 Structure: The construction of objects using type constructors.

Object Oriented Database Model

This model represents an entity as a class. A class captures the attributes as well as the behavior.

Instances of the class are called objects. Within an object, the class attributes take on specific

values which distinguish one object from another. Object Oriented Examples:

 Class: Cat.

 Attributes: Color, weight, breed.

 Behavior: Scratches, sleeps, purrs.

An instance of the cat class is an object with specific attributes.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 3

[TU Question]:- What are the advantages and disadvantages of OODBMS?

Advantages of OODBMS

 Easier Design-Reflect Applications

 Modularity and Reusability

 Incremental refinement and abstraction

 Multiple inheritance

 Support for multiple version and Alternatives

 Designer can specify the structure of objects and their behavior (methods).

 Better interaction with object-oriented languages such as Java and C++

 Definition of complex and user-defined types.

 Encapsulation of operations and user-defined methods.

Disadvantages of OODBMSs
There are following disadvantages of OODBMSs:

 Lack of universal data model: There is no universally agreed data model for an

OODBMS, and most models lack a theoretical foundation. This .disadvantage is seen as a

significant drawback, and is comparable to pre-relational systems.

 Lack of experience: In comparison to RDBMSs the use of OODBMS is still relatively

limited. This means that we do not yet have the level of experience that we have with

traditional systems. OODBMSs are still very much geared towards the programmer, rather

than the naïve end-user. Also there is a resistance to the acceptance of the technology.

While the OODBMS is limited to a small niche market, this problem will continue to exist

 Lack of standards: There is a general lack of standards of OODBMSs. We have

already mentioned that there is not universally agreed data model. Similarly, there is no

standard object-oriented query language.

 Competition: Perhaps one of the most significant issues that face OODBMS vendors is

the competition posed by the RDBMS and the emerging ORDBMS products. These

products have an established user base with significant experience available. SQL is an

approved standard and the relational data model has a solid theoretical formation and

relational products have many supporting tools to help .both end-users and developers.

 Query optimization compromises encapsulations: Query optimization

requires. An understanding of the underlying implementation to access the database

efficiently. However, this compromises the concept of incrassation.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 4

 Locking at object level may impact performance Many OODBMSs use

locking as the basis for concurrency control protocol. However, if locking is applied at the

object level, locking of an inheritance hierarchy may be problematic, as well as impacting

performance.

 Complexity: The increased functionality provided by the OODBMS (such as the illusion

of a single-level storage model, pointer sizzling, version management, and schema

evolution--makes the system more complex than that of traditional DBMSs. In complexity

leads to products that are more expensive and more difficult to use.

 Lack of support for views: Currently, most OODBMSs do not provide a view

mechanism, which, as we have seen previously, provides many advantages such as data

independence, security, reduced complexity, and customization.

 Lack of support for security: Currently, OODBMSs do not provide adequate

security mechanisms. The user cannot grant access rights on individual objects or classes.

Features of object oriented (O-O) Databases

 Object oriented databases store persistent objects permanently on secondary storage, and

allow the sharing of these objects among multiple programs and applications.

 Object oriented databases provide a unique system-generated object identifier for each

object. Object oriented databases maintain a direct correspondence between real-world and

database objects so that objects don’t lose their integrity and identify and can be easily be

identified and operated upon.

 In Object Oriented databases, objects can be very complex in order to contain all significant

information that may be required to describe the object completely.

 Object oriented databases allow us to store both the class and state of an object between

programs. They take the responsibility for maintaining the links between stored object

behavior and state away from the programmer, and manage objects outside of programs

with their public and private elements intact. They also simplify the whole process of

rendering objects persistent by performing such tasks invisibly.

State and Behavior

Object normally have property and some behavior. State of an object is the values of attributes and

behavior of object means operations that operates on attributes of given object.

Example: for the rectangle object,

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 5

Length, breadth acts as states of rectangle and calculating area of rectangle act as behavior of

rectangle object.

Type Constructors

Type constructor is the collection of multiple similar basic type under a common name. It

determines how the object is constructed. The type constructors can be used to define the data

structures for an object oriented database schema. The three most basic constructors are atom,

tuple, and set. Other commonly used constructors include list, bag, and array.

The type constructors set, list, array, and bag are called collection types (or bulk types), and to

distinguish them from basic types and tuple types. Here, the state of the object will be a collection

of objects that may be unordered or ordered.

Kinds of Type constructor:

 Atom: says that an object is storing atomic values.

e.g.: “Aarav“.

 Set: set of values of same type with duplication allowed.

e.g.: {123,456,123}.

 Bag: set with no duplicate items.

e.g.: {123,456,678}

 List: ordered collection of items of the same type with infinite size.

e.g.: [123,456,678]

 Array: similar to list but fixed size.

[TU Question]:- What is OID? How persistent objects are maintained in OO Database?

[TU Question]:- What is the difference between persistent and transient objects? How persistence

is handled in typical OO database systems?

OIDs (Object Identifiers)

When a program terminates then all the objects that is in the primary memory are lost. These kind

of objects called transient object. They do not live forever.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 6

However, OO allows us to store objects permanently in the database, these objects are called

persistent objects. Because they persist the beyond the life of program.

OIDs is the mechanism to refer to persistent objects. An ODMS provides a unique identity to each

independent object stored in the database. This unique identity is typically implemented via a

unique, system-generated object identifier (OID). The value of an OID is not visible to the external

user, but is used internally by the system to identify each object uniquely and to create and manage

inter-object references.

The main property required of an OID is that it be immutable; that is, the OID value of a

particular object should not change. This preserves the identity of the real-world object being

4rdrepresented.

Example: In Figure below, the attributes that refer to other objects—such as Dept of EMPLOYEE

or Projects of DEPARTMENT are basically OIDs that serve as references to other objects to

represent relationships among the objects. For example, the attribute Dept of EMPLOYEE is of

type DEPARTMENT, and hence is used to refer to a specific DEPARTMENT object (the

DEPARTMENT object where the employee works). The value of such an attribute would be an

OID for a specific DEPARTMENT object.

Define type EMPLOYEE

Tuple (Fname: string;

Minit: char;

Lname: string;

Ssn: string;

Birth_date: DATE;

Address: string;

Sex: char;

Salary: float;

Supervisor: EMPLOYEE;

Dept: DEPARTMENT ;);

Define type DATE

Tuple (Year: integer;

Month: integer;

Day: integer ;);

Define type DEPARTMENT

Tuple (Dname: string;

Dnumber: integer;

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 7

Mgr: tuple (Manager: EMPLOYEE;

Locations: set (string);

Start_date: DATE ;);

Employees: set (EMPLOYEE);

Projects: set (PROJECT) ;);

Fig: Specifying the object types EMPLOYEE, DATE, and DEPARTMENT using type

constructors.

Similarities and dissimilarities of Objects and Literals

Objects and literals are the basic building blocks of the object model. The main difference between

the two is that an object has both an object identifier and a state (or current value), whereas a literal

has a value (state) but no object identifier. In either case, the value can have a complex structure.

The object state can change over time by modifying the object value. A literal is basically a

constant value, possibly having a complex structure, but it does not change.

Every object must have an immutable OID, whereas a literal value has no OID and its value just

stands for itself. Thus, a literal value is typically stored within an object and cannot be referenced

from other objects. An object has five aspects: identifier, name, lifetime, structure, and creation.

 The object identifier is a unique system-wide identifier (or Object_id). Every object must

have an object identifier.

 Some objects may optionally be given a unique name within a particular ODMS—this

name can be used to locate the object, and the system should return the object given that

name.

 The lifetime of an object specifies whether it is a persistent object (that is, a database object)

or transient object (that is, an object in an executing program that disappears after the

program terminates). Lifetimes are independent of types—that is, some objects of a

particular type may be transient whereas others may be persistent.

 The structure of an object specifies how the object is constructed by using the type

constructors. The structure specifies whether an object is atomic or not. An atomic object

refers to a single object that follows a user-defined type, such as Employee or Department.

If an object is not atomic, then it will be composed of other objects.

 Object creation refers to the manner in which an object can be created. This is typically

accomplished via an operation new for a special Object_Factory interface.

In the object model, a literal is a value that does not have an object identifier. However, the value

may have a simple or complex structure. There are three types of literals: atomic, structured, and

collection.

 Atomic literals correspond to the values of basic data types and are predefined. The basic

data types of the object model include long, short, and unsigned integer numbers, regular

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 8

and double precision floating point numbers, Boolean values, single characters, character

strings, and enumeration types.

 Structured literals correspond roughly to values that are constructed using the tuple

constructor. The built-in structured literals include Date, Interval, Time, and Timestamp.

User-defined structures are created using the STRUCT keyword in ODL, as in the C and

C++ programming languages.

 Collection literals specify a literal value that is a collection of objects or values but the

collection itself does not have an Object_id. The collections in the object model can be

defined by the type generators set<T>, bag<T>, list<T>, and array<T>, where T is the type

of objects or values in the collection.

[TU Question]:- What is the difference between structured and unstructured complex object?

Differentiate identical versus equal objects with examples.

Complex objects (Object structure)

It means there is no restriction in the structure in the object. In ODBs, the value of a complex

object can be constructed from other objects. Each object is represented by triple. Complex objects

are built from simpler ones by applying constructors to them. The simplest objects are objects such

as integers, characters, byte strings of any length, Booleans and floats (one might add other atomic

types). There are various complex object constructors: tuples, sets, bags, lists, and arrays are

examples.

An object is defined by a triple (OID, type constructor, state) or (i, c, v) where OID is the unique

object identifier, type constructor is its type (such as atom, tuple, set, list, array, bag, etc.) and state

is its actual value.

Example:

 (i1, atom, 'John')

 (i2, atom, 30)

 (i3, atom, 'Mary')

 (i4, atom, 'Mark')

 (i5, atom 'Vicki')

 (i6, tuple, [Name: i1, Age: i3])

 (i7, set, {i4, i5})

 (i8, tuple, [Name: i3, Friends: i7])

 (i9, set, {i6, i8})

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 9

 Fig: Structure of Complex object

There are two types of complex objects in object oriented database system which are:

1. Structured complex object and

2. Unstructured complex object

1. Structured Complex object

Structured complex object is defined by repeated application of the type constructors

provided by the OODBMS. Simply structured complex objects are constructed by using

type constructors (set, atom, tuple etc.). Hence, the object structure is defined and known

to the OODBMS. The OODBMS also defines methods or operations on it.

Two types of reference semantics (ownership semantics and reference semantics) exist between

a complex object and its components at each level.

 Ownership semantics applies when the sub-objects of a complex object are encapsulated

within the complex object and are hence considered part of the complex object. It is also

called is-part-of or is-component-of relationship. e.g., “Arjun” atomic value owned by

employee. Means that ‘Arjun’ is dependent on owner.

 Reference semantics applies when the components of the complex object are themselves

independent objects but may be referenced from the complex object. It is also called is-

associated-with relationship. e.g., Department referenced by the employee object.

2. Unstructured complex objects

It is a data type provided by a DBMS and permits the storage and retrieval of large objects that are

needed by the database application. These objects are unstructured in the sense that the DBMS

does not know what their structure is, only the application programs that uses them can interpret

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 10

their meaning. These objects are considered complex because they require large area of storage

and are not part of the standard data types provided by traditional DBMSs.

Typical examples of such objects are bitmap images and long text strings (such as documents);

they are also known as binary large objects, or BLOBs for short. Character strings are also known

as character large objects, or CLOBs for short.

Identical vs. Equal objects

Two objects are said to have identical states (deep equality) if the graphs representing

their states are identical in every respect, including the OIDs at every level.

 Two objects are said to have equal states (shallow equality) if the graphs representing their

states are same, including all the corresponding atomic values. However, some corresponding

internal nodes in the two graphs may have objects with different OIDs.

Example: This example illustrates the difference between the two definitions for comparing object

states for equality.

 o1 = (i1, tuple, <a1:i4, a2:i6>)

 o2 = (i2, tuple, <a1:i5, a2:i6>)

 o3 = (i3, tuple, <a1:i4, a2:i6>)

 o4 = (i4, atom, 10)

 o5 = (i5, atom, 10)

 o6 = (i6, atom, 20)

In this example, the objects o1 and o2 have equal states (shallow equality), since their states at the

atomic level are the same but the values are reached through distinct objects o4 and o5.

 However, the objects o1 and o3 have identical states (deep equality), even though the

objects themselves are not because they have distinct OIDs. Similarly, although the states of o4

and o5 are identical, the actual objects o4 and o5 are equal but not identical, because they have

distinct OIDs.

Encapsulation of Operations, Methods, and Persistence

Encapsulation means that an object contains both the data structure and the set of operations that

can be used to manipulate it. Often cases, adopting encapsulation hides the implementation from

the users do not necessarily have to know the detail of it.

Encapsulation is related to the concepts of abstract data types and information hiding in

programming languages. Here the main idea is to define the behavior of a type of object based on

the operations that can be externally applied to objects of that type. The internal structure of the

object is hidden, and the object is only accessible through a number of predefined operations. Some

operations may be used to create or destroy objects; other operations may update the object value

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 11

and other may be used to retrieve parts of the object value or to apply some calculations to the

object value.

The external users of the object are only made aware of the interface of the object, which

defines the names and arguments of each operation. The implementation of the object is hidden

from the external users; it includes the definition of the internal data structure of the object and the

implementation of the operations that access these structures.

In object oriented - OO terminology, the interface part of each operation is called the

signature, and the operation implementation is called a method. A method is invoked by sending

a message to the object to execute the corresponding method.

Not all objects are meant to be stored permanently in the database. Transient objects exist

in the executing program and disappear once the program terminates.

Persistent objects are stored in the database and persist after program terminates. The

typical mechanism for persistence involves giving an object a unique persistent name through

which it can be retrieved.

In traditional database models and systems, this concept was not applied, since it is usual

to make the structure of database objects visible to users and external programs.

Inheritance

Inheritance is deriving objects from existing objects. The derived objects inherit properties from

their parent object. Parent objects are those objects from which other objects are derived.

Inheritance is a way of reusing the existing code.

Polymorphism

Polymorphism concept allows the same operator name or symbol to be bound to two or more

different implementation of the operator, depending on the type of objects to which the operator

is applied.

Multiple Inheritance and Selective Inheritance

Multiple inheritance in a type hierarchy occurs when a certain subtype T is a subtype of two (or

more) types and hence inherits the functions (attributes and methods) of both super types.

For example, we may create a subtype ENGINEERING_MANAGER that is a subtype of both

MANAGER and ENGINEER. This leads to the creation of a type lattice rather than a type

hierarchy.

One problem that can occur with multiple inheritance is that the super types from which

the subtype inherits may have different functions of the same name, creating an ambiguity.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 12

If a function is inherited from some common super type, then it is inherited only once. In

such a case, there is no ambiguity; the problem only arises if the functions are distinct in the two

super types. Some languages do not allow multiple inheritance.

Selective inheritance occurs when a subtype inherits only some of the functions of a super

type. Other functions are not inherited. This mechanism is not typically provide in OO database

system.

Versions and configurations

Versions:

 Ability to maintain several versions of an object

 Commonly found in many software engineering and concurrent engineering environments

 Merging and reconciliation of various versions is left to the application program

 Some systems maintain a version graph

Configuration:

 A configuration is a collection compatible versions of modules of a software system (a

version per module)

Object Relational Database concepts

Object relational DBMSs (ORDBMSs) are also called object-relational or enhanced systems.

These systems emerged as a way of enhancing the capabilities of relational DBMSs (RDBMSs)

with some of the features that appeared in object oriented DBMSs (ODBMSs). Object-relational

database systems provide a convenient migration path for users of relational database who wish to

use object-oriented features

An object-relational database (ORD), or object-relational database management

system (ORDBMS), is a database management system (DBMS) similar to a relational database,

but with an object-oriented database model: objects, classes and inheritance are directly supported

in database schemas and in the query language. In addition, just as with pure relational systems, it

supports extension of the data model with custom data-types and methods.

Downloaded from CSIT Tutor

https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Method_(computer_science)
https://en.wikipedia.org/wiki/File:Object-Oriented_Model.svg

--
By Bhupendra Singh Saud ADBMS 13

Example of an object-oriented database model

An object-relational database can be said to provide a middle ground between relational databases

and object-oriented databases (object database).

Comparison of RDBs vs. ORDBs

 Very easy to compare because both are based on relational model.

 An RDB does not support abstract data types (ADT), all attribute values must be atomic

and relations must be in first normal form (flat relation).

 An ORDB supports ADTs, attributes can be multivalued, and does not require first normal

form.

 The underlying basic data structures of RDBs are much simpler but less versatile than

ORDBs.

 ORDBs support complex data whereas RDBs don’t.

 ORDBs support wide range of applications.

 RDBs have only one construct i.e. Relation, whereas the type system of ODBs is much

richer and complex.

 RDBs require primary keys and foreign keys for implementing relationships, ODBs simply

don’t.

 ODBs support complex data whereas RDBs don’t.

 ODBs support wide range of applications.

 ODBs are much faster than RDBs but are less mature to handle large volumes of data.

 There is more acceptance and domination of RDBs in the market than that for ODBs.

 Both support ADTs, collections, OIDs, and inheritance, though philosophically quite

different.

 ORDBs extended RDBs whereas ODBs add persistence and database capabilities to OO

languages.

 Both support query languages for manipulating collections and nested and complex data.

 SQL3 is inspired from OO concepts and is converging towards OQL (object query

language).

 ORDBs carries all the benefits of RDBs, whereas ODBs are less benefited from the

technology of RDBs.

Overview of SQL and its object-relational features

SQL stands for structured query language. It is a database query language used to communicate

and manage data stored on the database. SQL was specified in 1970s. It was enhanced substantially

Downloaded from CSIT Tutor

https://en.wikipedia.org/wiki/Object_database

--
By Bhupendra Singh Saud ADBMS 14

in 1989 and 1992. A new standard called SQL3 added object-oriented features. A subset of SQL3

standard, now known as SQL-99 has been approved.

The following are some of the object database features that have been included in SQL:

 Some type constructors have been added to specify complex objects. These include the row

type, which corresponds to the tuple (or struct) constructor. An array type for specifying

collections is also provided. Other collection type constructors, such as set, list, and bag

constructors, were not part of the original SQL/Object specifications but were later

included in the standard.

 A mechanism for specifying object identity through the use of reference type is included.

 Encapsulation of operations is provided through the mechanism of user defined types

(UDTs) that may include operations as part of their declaration. These are somewhat

similar to the concept of abstract data types that were developed in programming

languages. In addition, the concept of user defined routines (UDRs) allows the definition

of general methods (operations).

 Inheritance mechanisms are provided using the keyword UNDER.

[TU Model Question):- Describe the steps of the algorithm for object database design by

EER-to-OO mapping.

Mapping an EER Schema to an ODB Schema

It is relatively straightforward to design the type declarations of object classes for an ODBMS

from an EER schema that contains neither categories nor n-ary relationships with n > 2. However,

the operations of classes are not specified in the EER diagram and must be added to the class

declarations after the structural mapping is completed.

The outline of the mapping from EER to ODL is as follows:

Step 1. Create an ODL class for each EER entity type or subclass. The type of the ODL class

should include all the attributes of the EER class. Multivalued attributes are typically declared by

using the set, bag, or list constructors. If the values of the multivalued attribute for an object

should be ordered, the list constructor is chosen; if duplicates are allowed, the bag constructor

should be chosen; otherwise, the set constructor is chosen. Composite attributes are mapped into

a tuple constructor (by using a struct declaration in ODL). Declare an extent for each class, and

specify any key attributes as keys of the extent.

Step 2. Add relationship properties or reference attributes for each binary relationship into the

ODL classes that participate in the relationship. These may be created in one or both directions. If

a binary relationship is represented by references in both directions, declare the references to be

relationship properties that are inverses of one another, if such a facility exists. If a binary

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 15

relationship is represented by a reference in only one direction, declare the reference to be an

attribute in the referencing class whose type is the referenced class name. Depending on the

cardinality ratio of the binary relationship, the relationship properties or reference attributes may

be single-valued or collection types. They will be single-valued for binary relationships in the 1:1

or N:1 directions; they are collection types (set-valued or list-valued) for relationships in the 1:N

or M:N direction. If relationship attributes exist, a tuple constructor can be used to create a structure

of the form < reference, relationship attributes>, which may be included instead of the reference

attribute.

Step 3. A constructor method should include program code that checks any constraints that must

hold when a new object is created. A destructor method should check any constraints that may be

violated when an object is deleted. Other methods should include any further constraint checks

that are relevant.

Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via extends) the

type and methods of its superclass in the ODL schema.

Step 5. Weak entity types can be mapped in the same way as regular entity types. An alternative

mapping is possible for weak entity types that do not participate in any relationships except their

identifying relationship; these can be mapped as though they were composite multivalued

attributes of the owner entity type, by using the set < struct <... >> or list <struct <... >>

constructors. The attributes of the weak entity are included in the struct <... > construct, which

corresponds to a tuple constructor.

Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It is possible to

create a mapping similar to the EER-to-relational mapping by declaring a class to represent the

category and defining 1:1 relationships between the category and each of its super classes. Another

option is to use a union type, if it is available

Step 7. An n-ary relationship with degree n > 2 can be mapped into a separate class, with

appropriate references to each participating class. These references are based on mapping a 1:N

relationship from each class that represents a participating entity type to the class that represents

the n-ary relationship. An M:N binary relationship especially if it contains relationship attributes,

may also use this mapping option, if desired.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 16

Active database concepts

A trigger is a procedure that is automatically invoked by the DBMS in response to specified

changes to the database, and is typically specified by the DBA. A database that has a set of

associated triggers is called an active database.

Generalized Model for Active Databases and Oracle Triggers

The model that has been used to specify active database rules is referred to as the Event-Condition-

Action (ECA) model. A rule in the ECA model has three components:

1. The event(s) that triggers the rule:

These events are usually database update operations that are explicitly applied to the

database. However, in the general model, they could also be temporal events or other kinds

of external events.

2. The condition that determines whether the rule action should be executed:

Once the triggering event has occurred, an optional condition may be evaluated. If no

condition is specified, the action will be executed once the event occurs. If a condition is

specified, it is first evaluated, and only if it evaluates to true will the rule action be executed.

3. The action to be taken:

The action is usually a sequence of SQL statements, but it could also be a database

transaction or an external program that will be automatically executed.

A syntax summary for specifying triggers in the Oracle system

 CREATE TRIGGER <trigger name>

AFTER / BEFORE <triggering events>

ON <table name>

[FOR EACH ROW]

[WHEN <condition>]

<Trigger actions>;

Example: For the following schema diagram;

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 17

Suppose, we need to compute Total_sal if the new employee is immediately assigned to a

department—that is, if the value of the Dno attribute for the new employee tuple is not NULL

Design and Implement Issues for Active Databases

In addition to creating rules, an active database allows users to activate, deactivate, drop, and

group rules by refereeing their rules

 A deactivated rule will not be triggered by the triggering event. This feature allows

users to selectively deactivate rules for certain periods of time when they are not

needed

 The active command will make the rule active again

 The drop command deletes the rule from the system

 Another option is to group rules into named rule sets, so the whole set of rules

could be activated, deactivated, or dropped. It is also useful to have a command that

can trigger a rule or rule set via an explicit PROCESS RULE command issued by

the user.

 Whether the triggered action should be executed before, after, or concurrently

with the triggering event. Whether the action being executed should be considered

as a separate transaction or whether it should be part of the same transaction that

triggered the rule

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 18

There are three main possibilities for condition evaluation (also known as rule

consideration)

 Immediate consideration: The condition is evaluated as part of the same

transaction as the triggering event, and is evaluated immediately. This case can be

further categorized into three options:

 Evaluate the condition before executing the triggering event

 Evaluate the condition after executing the triggering event

 Evaluate the condition instead of executing the triggering event

 Deferred consideration. The condition is evaluated at the end of the transaction

that included the triggering event. In this case, there could be many triggered rules

waiting to have their conditions evaluated.

 Detached consideration. The condition is evaluated as a separate transaction,

spawned from the triggering transaction.

Potential Applications for Active Databases

 Notification – allow notification of certain conditions that occur

 Enforce integrity constraint – specify the types of events that may cause the constraints

to be violated and then evaluating appropriate condition that check whether the constraints

are actually violated by the event or not

 Automatic maintenance of derived data

 Maintain the consistency of materialized views whenever the base relations are modified

 Maintain replicated tables whenever the master table is modified

Temporal database concepts

Temporal databases, in the broadest sense, encompass all database applications that require some

aspect of time when organizing their information. It encompass all DB applications that require

some aspect of time when organizing their information. A temporal database is a database that

has certain features that support time-sensitive status for entries. Where some databases are

considered current databases and only support factual data considered valid at the time of use, a

temporal database can establish at what times certain entries are accurate.

Temporal DB applications have been developed since the early days of database usage.

However, in creating these applications, it was mainly left to the application developers to

discover, design, program, and implement the temporal concepts.

There are many examples of applications where some aspect of time is needed to maintain the

information in a DB.

• Health care: patient histories need to be maintained

• Insurance: claims and accident histories are required

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 19

• Finance: stock price histories need to be maintained.

• Personnel management: salary and position history need to be maintained

• Banking: credit histories

Valid Time and Transaction Time Dimensions

Valid time

Given a particular event or fact that is associated with a particular time point or time period in the

database, the association may be interpreted to mean different things. The most natural

interpretation is that the associated time is the time that the event occurred, or the period during

which the fact was considered to be true in the real world. If this interpretation is used, the

associated time is often referred to as the valid time.

Simply, the valid time denotes the time period during which an event occur or a fact is true with

respect to the real world. A temporal database using this interpretation is called a valid time

database.

Example:

Imagine that we come up with a temporal database storing data about the 18th century. The valid time of

these facts is somewhere between 1700 and 1799, whereas the transaction time starts when we insert the

facts into the database, for example, January 21, 1998. Assume we would like to store data about our

employees with respect to the real world. Then, the following table could result:

EmpID Name Department Salary ValidTimeStart ValidTimeEnd

10 John Research 11000 1985 1990

10 John Sales 11000 1990 1993

10 John Sales 12000 1993 Now

11 Paul Research 10000 1988 1995

12 George Research 10500 1991 Now

13 Ringo Sales 15500 1988 Now

The above valid-time table stores the history of the employees with respect to the real world. The

attributes ValidTimeStart and ValidTimeEnd actually represent a time interval which is closed

at its lower and open at its upper bound. Thus, we see that during the time period [1985 – 1990],

employee John was working in the research department, having a salary of 11000. Then he

changed to the sales department, still earning 11000. In 1993, he got a salary raise to 12000. Note

that it is now possible to store information about past states. We see that Paul was employed from

1988 until 1995. In the corresponding non-temporal table, this information was (physically)

deleted when Paul left the company.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 20

Transaction Time

However, a different interpretation can be used, where the associated time refers to the time when

the information was actually stored in the database; that is, it is the value of the system time clock

when the information is valid in the system. In this case, the associated time is called the

transaction time. A temporal database using this interpretation is called a transaction time

database.

Simply, the Transaction time is the time period during which a fact is stored in the database.

Example:

EmpID Name Department Salary TransactionTimeStart TransactionTimeEnd

10 John Research 11000 1985-10-2, 10:02:33 1990-10-2, 11:33:04

10 John Sales 11000 1990-04-11, 05:04:33 1993-05-11, 06:22:55

10 John Sales 12000 1993-7-30, 5:33:05 Now

11 Paul Research 10000 1988-5-23, 7:23:34 1995-8-30, 5:33:55

12 George Research 10500 1991-8-23, 12:44:34 Now

13 Ringo Sales 15500 1988-7-24, 11:23:55 Now

The above valid-time table stores the history of the employees with respect to the real world. The

attributes TransactionTimeStart and TransactionTimeEnd actually represent a transaction time

interval which is closed at its lower and open at its upper bound.

Bitemporal Database

In some applications, only one of the dimensions is needed and in other cases both time dimensions

are required, in which case the temporal database is called a bitemporal database. It uses both

valid time and transaction time in a single database.

Deductive databases

A deductive database system typically specify rules through a declarative language – a language

in which we specify what to achieve rather than how to achieve it. It is a database system that can

make deductions (i.e., conclude additional facts) based on rules and facts stored in the (deductive)

database. It is also related to the field of logic programming and the Prolog language.

A variation of Prolog called Datalog can also be used to define rules declaratively in

conjunction with an existing set of relations. A deductive database used two main types of

specifications: facts and rules.

Facts are specified in a manner similar to the way relations are specified, except that it is not

necessary to include the attribute names.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 21

Rules are somewhat similar to relational views. They specify virtual relations that are not actually

stored but that can be formed from the facts by applying inference mechanisms based on the rule

specifications.

The deductive database work based on logic has used Prolog as a starting point. A variation of

Prolog called Datalog is used to define rules declaratively in conjunction with an existing set of

relations, which are themselves treated as literals in the language.

The notation used in Prolog/Datalog is based on providing predicates with unique names.

A predicate has an implicit meaning, which is suggested by the predicate name, and a fixed number

of arguments. The predicate‘s type is determined by its arguments:

 If the arguments are all constant values, the predicate simply states that a certain fact is true

 If the predicate has variables as arguments, it is either considered as a query or as part of a

rule or constraint.

[TU Question]:- Describe multimedia database and what are the different types of

multimedia data that are available in current systems?

[TU Question]:- Enumerate the limitations of conventional database compared to multimedia

database.

Multimedia Databases

Multimedia databases provide features that allow users to store and query different types of

multimedia information, which includes images, video clips, audio clips, and documents.

Simply, a Multimedia database (MMDB) is a collection of related multimedia data. The

multimedia data include one or more primary media data types such as text, images, graphic

objects (including drawings, sketches and illustrations) animation sequences, audio and video.

Multimedia databases provide features that allow users to store and query different types

of multimedia information, which includes images (such as photos or drawings), video clips (such

as movies, newsreels, or home videos), audio clips (such as songs, phone messages, or speeches),

and documents (such as books or articles). The main types of database queries that are needed

involve locating multimedia sources that contain certain objects of interest. For example, one may

want to locate all video clips in a video database that include a certain person, say Michael Jackson.

One may also want to retrieve video clips based on certain activities included in them, such as

video clips where a soccer goal is scored by a certain player or team.

Advantages of Multimedia database

 It is very user-friendly. It doesn’t take much energy out of the user, in the sense that you

can sit and watch the presentation, you can read the text and hear the audio.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 22

 It is multi sensorial. It uses a lot of the user’s senses while making use of multimedia, for

example hearing, seeing and talking.

 It is integrated and interactive. All the different mediums are integrated through the

digitization process. Interactivity is heightened by the possibility of easy feedback.

 It is flexible. Being digital, this media can easily be changed to fit different situations and

audiences.

 It can be used for a wide variety of audiences, ranging from one person to a whole group.

Disadvantages

 Information overload. Because it is so easy to use, it can contain too much information at

once.

 It takes time to compile. Even though it is flexible, it takes time to put the original draft

together.

 It can be expensive. Multimedia makes use of a wide range of resources, which can cost

you a large amount of money.

 Too much makes it unpractical. Large files like video and audio has an effect of the time it

takes for your presentation to load. Adding too much can mean that you have to use alarger

computer to store the files.

Characteristics of different multimedia sources

Image

 Typically stored either in raw form as a set of pixel or cell values, or in compressed form

to save space

 Each image can be represented by an m by n grid of cells and each cell contains a pixel

value that describe the cell content

 Compression standards, such as GIF or JPEG, use various mathematical transformations

to reduce the number of cells stored.

Video

 Typically represented as a sequence of frames, where each frame is a still image

 The video is divided into video segments, where each segment is made up of sequence of

contiguous frames that includes the same objects/activities. Each segment is identified by

its starting and ending frames

 An indexing technique called frame segment trees has been proposed for video indexing.

The index includes both objects and activities

 Videos are also often compressed using standards such as MPEG

Text/Document

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 23

 The full text of some article, book, or magazine

 Typically indexed by identifying the keywords that appear in the text and their relative

frequencies. Because there are too many keywords when attempting to index, a technique

called singular value decomposition (SVD) can be used to reduce the number of keywords

 An indexing technique called telescoping vector trees, or TV-trees can be used to group

similar documents together

Audio

 Include stored recorded messages

 Discrete transforms can be used to identify the main characteristics of a certain person’s

voice in order to have similarity based indexing and retrieval. Futures include loudness,

intensity, pitch, and clarity

Types of Multimedia are available in current systems:

DBMSs have been constantly adding to the types of data they support. Today many types of

multimedia data are available in current systems.

 Text: May be formatted or unformatted. For ease of parsing structured documents,

standards like SGML and variations such as HTML are being used.

 Graphics: Examples include drawings and illustrations that are encoded using some

descriptive standards (e.g. CGM, PICT, postscript).

 Images: Includes drawings, photographs, and so forth, encoded in standard formats such

as bitmap, JPEG, and MPEG. Compression is built into JPEG and MPEG. These images

are not subdivided into components. Hence querying them by content (e.g., find all images

containing circles) is nontrivial.

 Animations: Temporal sequences of image or graphic data.

 Video: A set of temporally sequenced photographic data for presentation at specified rates–

for example, 30 frames per second.

 Structured audio: A sequence of audio components comprising note, tone, duration, and

so forth.

 Audio: Sample data generated from aural recordings in a string of bits in digitized form.

Analog recordings are typically converted into digital form before storage.

 Composite or mixed multimedia data: A combination of multimedia data types such as

audio and video which may be physically mixed to yield a new storage format or logically

mixed while retaining original types and formats. Composite data also contains additional

control information describing how the information should be rendered.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 24

[TU Question]:- Discuss some applications of active database. How do spatial databases

differ from regular database?

Spatial Database

A spatial database is a database that is enhanced to store and access spatial data or data that defines

a geometric space. The special data stored in the form of co-ordinate form. These data are often

associated with geographic locations and features, or constructed features like cities. Data on

spatial databases are stored as coordinates, points, lines, polygons and topology. Some spatial

databases handle more complex data like three-dimensional objects, topological coverage and

linear networks.

The main goal of a spatial database system is the effective and efficient handling of spatial

data types in two, three or higher dimensional spaces, and the ability to answer queries taking into

consideration the spatial data properties.

A common example of spatial data can be seen in a road map. A road map is a 2-

dimensional object that contains points, lines, and polygons that can represent cities, roads, and

political boundaries such as states or provinces. A road map is a visualization of geographic

information.

Examples of spatial data types are:

 Point: characterized by a pair of (x, y) values,

 Line segment: characterized by a pair of points,

 Rectangle: characterized by its lower-left and upper-right corners,

 Polygon: comprised by a set of points, defining its corners.

Examples of spatial datasets

Three types of spatial queries

o Range query – Finds the objects of a particular type that are within a particular

distance from a given location. For example, finds all hospitals within the

Kathmandu city area, or finds all ambulances within five miles of an accident

location

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 25

o Nearest neighbor query – Finds an object of a particular type that is closest to a

given location. For example, finds the police car that is closest to a particular

location

o Spatial joins or overlays – Typically joins the objects of two types based on some

spatial condition, such as the objects intersecting or overlapping spatially or being

within a certain distance of one another. For example, find all cities that fall on a

major highway or finds all homes that are within two miles of a lake

Geographic Information Systems (GIS)

Geographic information systems (GIS) are used to collect, model, store, and analyze information

describing physical properties of the geographical world. GIS technology integrates common

database operations such as query and statistical analysis with the unique visualization and

geographic analysis benefits offered by maps. Map making and geographic analysis are not new,

but a GIS performs these tasks better and faster than do the old manual methods. And, before GIS

technology, only a few people had the skills necessary to use geographic information to help with

decision making and problem solving. Today, Professionals in every field are increasingly aware

of the advantages of thinking and working geographically.

The scope of GIS broadly encompasses two types of data:

1. Spatial data, originating from maps, digital images, administrative and political

boundaries, roads, transportation networks; physical data such as rivers, soil

characteristics, climatic regions, land elevations

2. Non-spatial data, such as socio-economic data (like census data), economic data, or sales

or marketing information.

Components of GIS

A working Geographic Information System seamlessly integrates five key components: hardware,

software, data, people, and methods.

Hardware: Hardware includes the computer on which a GIS operates, the monitor on which

results are displayed, and a printer for making hard copies of the results.

GIS software: It provides the functions and tools needed to store, analyze, and display geographic

information. Key software components include tools for the input and manipulation of geographic

information, a database management system (DBMS), tools that support geographic query,

analysis, and visualization, and a graphical user interface (GUI) for easy access to tools.

Data: Possibly the most important component of a GIS is the data. A GIS will integrate spatial

data with other data resources and can even use a database management system, used by most

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 26

organizations to organize and maintain their data, to manage spatial data. There are three ways to

obtain the data to be used in a GIS. Geographic data and related tabular data can be collected in-

house or produced by digitizing images from aerial photographs or published maps.

People: GIS users range from technical specialists who design and maintain the system to those

who use it to help them perform their everyday work.

Methods: A successful GIS operates according to a well-designed plan and business rules, which

are the models and operating practices unique to each organization.

GIS applications

It is possible to divide GISs into three categories:

1. Cartographic applications

2. Digital terrain modeling applications, and

3. Geographic objects applications

In cartographic and terrain modeling applications, variations in spatial attributes are captured – for

example, soil characteristics, crop density, and air quality.

In geographic object applications, objects of interest are identified from a physical domain – for

example, power plants, electoral districts, property parcels, product distribution districts, and city

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 27

landmarks; These objects are related with pertinent application data – for example, power

consumption, voting patterns, property sales volumes, product sales volume, and traffic density.

The first two categories of GIS applications require a field-based representation, whereas the third

category requires an object-based one. The cartographic approach involves special functions that

can include the overlapping of layers of maps to combine attribute data. Digital terrain modeling

requires a digital representation of parts of earth’s surface using land elevations at sample points

that are connected to yield a surface model showing the surface terrain. In object-based geographic

applications, additional spatial functions are needed to deal with data.

Data management requirements of GIS

The functional requirements of the GIS applications translate into the following database

requirements.

 Data Modeling and Representation.

 Data Analysis

 Data Integration

 Data Capture

1. Data Modeling and Representation

GIS data can be broadly represented in tow formats:

 vector and

 raster

Vector data represents geometric objects such as points, lines, and polygons

Raster data is characterized as an array of points, where each point represents the value of an

attribute for a real-world location. Informally, raster images are n-dimensional array where each

entry is a unit of the image and represents an attribute. Two-dimensional units are called pixels,

while three-dimensional units are called voxels. Three-dimensional elevation data is stored in a

raster-based digital elevation model (DEM) format. This model is commonly used for analytical

applications such as modeling, map algebra, and more advanced techniques of feature extraction

and clustering.

2. Data Analysis

GIS data undergoes various types of analysis for example, in applications such as soil erosion

studies, environmental impact studies, or hydrological runoff simulations, data may undergo

various types of geomorphometric analysis – measurements such as slope values, gradients (the

rate of change in altitude), aspect (the compass direction of the gradient), profile convexity (the

rate of change of gradient), plan convexity (the convexity of contours and other parameters).

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 28

3. Data Integration

GISs must integrate both vector and raster data from a variety of sources. Sometimes edges and

regions are inferred from a raster image to form a vector model, or conversely, raster images such

as aerial photographs are used to update vector models

4. Data Capture

The first step in developing a spatial database for cartographic modeling is to capture the two-

dimensional or three-dimensional geographical information in digital form – a process that is

sometimes impeded by source map characteristics such as resolution, type of projection, map

scales, cartographic licensing, diversity of measurement techniques, and coordinate system

differences. Spatial data can also be captured from remote sensors in satellites such as Landsat,

NORA, and Advanced Very High Resolution Radiometer as well as SPOT HRV (High Resolution

Visible Range Instrument.

Specific GIS data operations

GIS applications are conducted through the use of special operators such as the following:

 Interpolation – derives elevation data

 Interpretation – involves the interpretation of operations on terrain data such as editing,

smoothing, reducing details, and enhancing.

 Proximity analysis – computation of “zones of interest” around objects

 Raster image processing – can be divided into (1) map algebra and (2) digital image

analysis

 Analysis of networks – analysis of networks for segmentation, overlays, and so on

Mobile Databases

Recent advances in portable and wireless technology have led to mobile computing, a new

dimension in data communication and processing. A mobile database is a database that can be

connected to by a mobile computing device over a mobile network. It is portable and physically

separate from the corporate database server. But Mobile Database is capable of communicating

with that corporate database server from remote sites allowing the sharing of corporate database.

Mobile computing devices (e.g., smartphones and PDAs) store and share data over

a mobile network, or a database which is actually stored by the mobile device. A mobile database is

a database that resides on a mobile device such as a PDA, a smart phone, or a laptop. Such devices

are often limited in resources such as memory, computing power, and battery power.

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 29

Mobile computing architecture, characteristics of mobile environments, data management issues.

It can also be defined as a system with the following structural and functional properties.

 Distributed system with mobile connectivity (A mode in which a client or a server can

establish communication with each other whenever needed)

 Full database system capability

 Complete spatial mobility

 Wireless and wired communication capability

Ability of mobile DBMS

 Communicate with centralized database server through modes such as wireless or Internet

access

 Replicate data on centralized database server and mobile device

 Synchronize data on centralized database server and mobile device

 Capture data from various sources such as Internet

 Manage/analyze data on the mobile device

 Create customized mobile applications

[TU Question: - Describe the characteristics of mobile computing environment in detail]

[TU Question: - Explain mobile computing architecture with suitable diagram]

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 30

Mobile Computing Architecture

The general architecture of a mobile platform is a distributed architecture where a number of

computers, generally referred to as Fixed Hosts and Base Stations, are interconnected through a

high speed wired network. Fixed hosts are general purpose computers configured to manage

mobile units. Base stations function as a gateways to the fixed network for the Mobile Units; they

are equipped with wireless interfaces and offer network access services of which mobile units are

clients.

Fig: A general architecture of a mobile platform

Wireless Communications

The wireless medium on which mobile units and base stations communicate have bandwidths

significantly lower than those of a wired network. Some wireless access options allow seamless

roaming throughout a geographical region (e.g., cellular networks), whereas Wi-Fi networks are

localized around a base station; Some wireless networks, such as Wi-Fi and Bluetooth, use

unlicensed areas of frequency spectrum, which may cause interference with other appliances, such

as cordless telephones; Modern wireless networks can transfer data in units called packets, that are

commonly used in wired networks in order to conserve bandwidth; Wireless applications must

consider these characteristics when choosing a communication option

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 31

Client/Network Relationships

Mobile units can move freely in a geographic mobility domain, an area that is circumscribed by

wireless network coverage; To manage the mobility of units, the entire geographic mobility

domain is divided into one or more smaller domains, called cells, each of which is supported by at

least one base station; The mobile discipline requires that the movement of mobile units be

unrestricted throughout the cells of a geographic mobility domain, while maintaining information

access contiguity – i.e., movement, especially intercell movement, does not negatively affect the

data retrieval process; This architecture is designed for a fixed network, emulating a traditional

client-server architecture

Characteristics of Mobile Computing Environments

The characteristics of mobile computing include high communication latency, intermittent

wireless connectivity, limited battery life, and changing client location

 Latency is caused by the processes unique to the wireless medium, such as coding data for

wireless transfer, and tracking and filtering wireless signals at the receiver.

 Intermittent connectivity can be intentional or unintentional; unintentional

disconnections happen in areas where wireless signals cannot reach, e.g., elevator shafts or

subway tunnels; Intentional disconnections occur by user intent, e.g., during an airplane

takeoff, or when the mobile device is powered down.

 Battery life is directly related to battery size, and indirectly related to the mobile device’s

capabilities and overall efficiency.

 Client locations are expected to change, which alters the network topology and may cause

their data requirements to change.

First, servers must keep track of client locations in order to route messages to them

efficiently. Second, client data should be stored in network location that minimize the

traffic necessary to access it. Keeping data in a fixed location increases access latency if

the client moves far away from it.

All these characteristics impact data management, and robust mobile applications must consider

them. To compensate for high latencies and unreliable connectivity, clients’ cache replicas of

important, frequently accessed data, and work offline, if necessary; besides increasing data

availability and response time, caching can also reduce client power consumption by eliminating

the need to make energy-consuming wireless data transmission for each data access

Data Management Issues

From a data management standpoint, mobile computing may be considered a variation of

distributed computing. Mobile databases can be distributed under two possible scenarios:

Downloaded from CSIT Tutor

--
By Bhupendra Singh Saud ADBMS 32

1. The entire database is distributed mainly among the wired components, possibly with full or

partial replication; a base station or fixed host manages its own database with a DBMS-like

functionality, with additional functionality for locating mobile units and additional query and

transaction management features to meet the requirements of mobile environments.

2. The database is distributed among wired and wireless components; Data management

responsibility is shared among base stations or fixed hosts and mobile units.

The distributed data management issues can also be applied to mobile databases with the following

additional considerations and variations:

 Data distribution and replication – Data is unevenly distributed among the base stations

and mobile units.

 Transactions models – Issues of fault tolerance and correctness of transactions are

aggravated.

 Query processing – Awareness of where data is located is important and affects the

cost/benefit analysis of query processing; Query optimization is more complicated because

of mobility and rapid resource changes of mobile units.

 Recovery and fault tolerance – The mobile database environment must deal with site,

media, transaction, and communication failure.

 Mobile database design – The global name resolution problem for handling queries is

compounded because of mobility and frequent shutdown.

 Location-based service – As clients move, location-dependent cache information may

become stale.

 Division of labor – Certain characteristics of the mobile environment force a change in the

division of labor in query processing.

 Security – Mobile data is less secure than that which is left at the fixed location.

Downloaded from CSIT Tutor

Data Mining

Data mining refers to the mining or discovery of new information in terms of patterns or rules from

vast amounts of data. It is also defined as the process of finding interesting structure in data. Data

mining employs one or more computer learning techniques such as machine learning, statistics,

neural networks, and genetic algorithms to automatically analyze and extract knowledge from data.

To be practically useful, data mining must be carried out efficiently on large files and databases

The process of Discovering meaningful patterns & trends often previously unknown, by

shifting large amount of data, using pattern recognition, statistical and Mathematical techniques is

called data mining. It is also defined as a group of techniques that find relationship that have not

previously been discovered.

Data mining is a logical process that is used to search through large amount of

data in order to find useful data. The goal of this technique is to find patterns that were

previously unknown. Once these patterns are found they can further be used to make

certain decisions for development of their business.

Three steps involved are:

1. Exploration

2. Pattern identification

3. Deployment

Exploration: In the first step of data exploration data is cleaned and transformed into

another form, and important variables and then nature of the data based on the problem

are determined.

Pattern identification: Once data is explored, refined and defined for the specific

variables the second step is to form pattern identification. Identify and choose the

patterns which make the best prediction.

 Unit 4

 New database applications and environments

 By

 Bhupendra Singh Saud

Downloaded from CSIT Tutor

Deployment: Patterns are deployed for desired outcome.

Functions of data mining

The types of information obtainable from data mining include associations, sequences,

classifications, clusters, and forecasts.

 Association: Association is one of the best known data mining technique. In

association, a pattern is discovered based on a relationship between items in the

same transaction. That is the reason why association technique is also known

as relation technique. The association technique is used in market basket

analysis to identify a set of products that customers frequently purchase together.

For instance, books that tends to be bought together. If a customer buys a book, an

online bookstore may suggest other associated books. If a person buys a camera,

the system may suggest accessories that tend to be bought along with cameras.

 Prediction: The prediction, as it name implied, is one of a data mining techniques

that discovers relationship between independent variables and relationship

between dependent and independent variables. For instance, the prediction

analysis technique can be used in sale to predict profit for the future if we consider

sale is an independent variable, profit could be a dependent variable. For instance,

when a person applies for a credit card, the credit-card company wants to predict

if the person is a good credit risk. The prediction is to be based on known attributes

of the person, such as age, income, debts, and past debt repayment history.

 Classification: Classification is a classic data mining technique based on machine

learning. Basically classification is used to classify each item in a set of data into

one of predefined set of classes or groups. Classification method makes use of

mathematical techniques such as decision trees, linear programming, neural

network and statistics. For example, we can apply classification in application that

“given all records of employees who left the company; predict who will probably

leave the company in a future period.” In this case, we divide the records of

employees into two groups that named “leave” and “stay”. And then we can ask

our data mining software to classify the employees into separate groups.

 Clustering: Clustering is a data mining technique that makes meaningful or useful

cluster of objects which have similar characteristics using automatic technique.

The clustering technique defines the classes and puts objects in each class, while

in the classification techniques, objects are assigned into predefined classes. For

Downloaded from CSIT Tutor

example in a library, there is a wide range of books in various topics available. The

challenge is how to keep those books in a way that readers can take several books

in a particular topic without hassle. By using clustering technique, we can keep

books that have some kinds of similarities in one cluster or one shelf and label it

with a meaningful name.

Applications of Data Mining

Data mining is widely used in diverse areas. There are a number of commercial data mining system

available today and yet there are many challenges in this field. In this tutorial, we will discuss the

applications and the trend of data mining.

Data Mining Applications

Here is the list of areas where data mining is widely used −

 Financial Data Analysis

 Retail Industry

 Telecommunication Industry

 Biological Data Analysis

 Other Scientific Applications

 Intrusion Detection

Financial Data Analysis

The financial data in banking and financial industry is generally reliable and of high quality which

facilitates systematic data analysis and data mining. Some of the typical cases are as follows −

 Design and construction of data warehouses for multidimensional data analysis and data

mining.

 Loan payment prediction and customer credit policy analysis.

 Classification and clustering of customers for targeted marketing.

 Detection of money laundering and other financial crimes.

Retail Industry

Data Mining has its great application in Retail Industry because it collects large amount of data

from on sales, customer purchasing history, goods transportation, consumption and services. It is

natural that the quantity of data collected will continue to expand rapidly because of the increasing

ease, availability and popularity of the web.

Data mining in retail industry helps in identifying customer buying patterns and trends that lead to

improved quality of customer service and good customer retention and satisfaction. Here is the list

of examples of data mining in the retail industry −

 Design and Construction of data warehouses based on the benefits of data mining.

Downloaded from CSIT Tutor

 Multidimensional analysis of sales, customers, products, time and region.

 Analysis of effectiveness of sales campaigns.

 Customer Retention.

 Product recommendation and cross-referencing of items.

Telecommunication Industry

Today the telecommunication industry is one of the most emerging industries providing various

services such as fax, pager, cellular phone, internet messenger, images, e-mail, web data

transmission, etc. Due to the development of new computer and communication technologies, the

telecommunication industry is rapidly expanding. This is the reason why data mining is become

very important to help and understand the business.

Data mining in telecommunication industry helps in identifying the telecommunication patterns,

catch fraudulent activities, make better use of resource, and improve quality of service. Here is the

list of examples for which data mining improves telecommunication services −

 Multidimensional Analysis of Telecommunication data.

 Fraudulent pattern analysis.

 Identification of unusual patterns.

 Multidimensional association and sequential patterns analysis.

 Mobile Telecommunication services.

 Use of visualization tools in telecommunication data analysis.

Biological Data Analysis

In recent times, we have seen a tremendous growth in the field of biology such as genomics,

proteomics, functional Genomics and biomedical research. Biological data mining is a very

important part of Bioinformatics. Following are the aspects in which data mining contributes for

biological data analysis −

 Semantic integration of heterogeneous, distributed genomic and proteomic databases.

 Alignment, indexing, similarity search and comparative analysis multiple nucleotide

sequences.

 Discovery of structural patterns and analysis of genetic networks and protein pathways.

 Association and path analysis.

 Visualization tools in genetic data analysis.

Other Scientific Applications

The applications discussed above tend to handle relatively small and homogeneous data sets for

which the statistical techniques are appropriate. Huge amount of data have been collected from

scientific domains such as geosciences, astronomy, etc. A large amount of data sets is being

Downloaded from CSIT Tutor

generated because of the fast numerical simulations in various fields such as climate and ecosystem

modeling, chemical engineering, fluid dynamics, etc. Following are the applications of data mining

in the field of Scientific Applications −

 Data Warehouses and data preprocessing.

 Graph-based mining.

 Visualization and domain specific knowledge.

Intrusion Detection

Intrusion refers to any kind of action that threatens integrity, confidentiality, or the availability of

network resources. In this world of connectivity, security has become the major issue. With

increased usage of internet and availability of the tools and tricks for intruding and attacking

network prompted intrusion detection to become a critical component of network administration.

Here is the list of areas in which data mining technology may be applied for intrusion detection −

 Development of data mining algorithm for intrusion detection.

 Association and correlation analysis, aggregation to help select and build discriminating

attributes.

 Analysis of Stream data.

 Distributed data mining.

 Visualization and query tools.

Trends in Data Mining

Data mining concepts are still evolving and here are the latest trends that we get to see in

this field −

 Application Exploration.

 Scalable and interactive data mining methods.

 Integration of data mining with database systems, data warehouse systems and

web database systems.

 Standardization of data mining query language.

 Visual data mining.

 New methods for mining complex types of data.

 Biological data mining.

 Data mining and software engineering.

 Web mining.

 Distributed data mining.

 Real time data mining.

 Multi database data mining.

Downloaded from CSIT Tutor

 Privacy protection and information security in data mining.

Web mining

The discovery and analysis of useful patterns and information from the World Wide Web

or simply web is called web mining. Web mining is the application of data mining

technique to find interesting and potentially useful knowledge from web data. So web

mining is the application of data mining technique to extract knowledge from web data,

including web documents, hyperlinks between documents, usage logs of web sites etc.

Businesses might turn to Web mining to help them understand customer behavior,

evaluate the effectiveness of a particular Web site, or quantify the success of a

marketing campaign. For instance, marketers use Google Trends and Google Insights

for Search services, which track the popularity of various words and phrases used in

Google search queries, to learn what people are interested in and what they are

interested in buying.

Data Warehouse

A data warehouse is a repository of multiple heterogeneous data sources organized

under a unified schema at a single site to facilitate management decision making. A data

warehouse is a subject-oriented, integrated, time-variant and nonvolatile collection of

data in support of management’s decision-making process.

a. Subject-Oriented: A data warehouse can be used to analyze a particular subject

area. For example, "sales" can be a particular subject.

b. Integrated: A data warehouse integrates data from multiple data sources. For

example, source A and source B may have different ways of identifying a product,

but in a data warehouse, there will be only a single way of identifying a product.

c. Time-Variant: Historical data is kept in a data warehouse. For example, one can

retrieve data from 3 months, 6 months, 12 months, or even older data from a data

warehouse. This contrasts with a transactions system, where often only the most

recent data is kept. For example, a transaction system may hold the most recent

address of a customer, where a data warehouse can hold all addresses associated

with a customer.

d. Non-volatile: Once data is in the data warehouse, it will not change. So, historical

data in a data warehouse should never be altered.

Downloaded from CSIT Tutor

A data warehouse is a repository of current and historical data of an organization that

are organized to facilitate reporting and analysis. The data originate in many core

operational transaction systems, such as systems for sales, customer accounts, and

manufacturing, and may include data from Web site transactions. The data warehouse

consolidates and standardizes information from different operational databases so that

the information can be used across the enterprise for management analysis and decision

making. Figure below illustrates how a data warehouse works. The data warehouse

makes the data available for anyone to access as needed, but it cannot be altered. A data

warehouse system also provides a range of ad hoc and standardized query tools,

analytical tools, and graphical reporting facilities. Many firms use intranet portals to

make the data warehouse information widely available throughout the firm.

 Data warehouse

Operational

data

Customer

data

Manufactur

ing data

Historical

data

External

data

Flat

files

ETL

Extraction,

Transformation

Loading

Meta

data

Sum-

mary

data

Raw

data

OLAP

Analysis

Reporting

Data

mining

Downloaded from CSIT Tutor

Features of Data warehouse

 It is separate from operational database.

 Integrates data from heterogeneous systems

 Store huge amount of data, more historical data than current data

 Does not require data to be highly accurate

 Queries are generally complex

 Provides an integrated and total view of the enterprise

 Makes the enterprise’s current and historical information easily available for

decision making

 Makes decision support transaction possible without hindering operational

systems

 Renders the organization’s information consistent

 Presents a flexible and interactive source of strategic information

Need of data warehouse

Data warehouse is needed for the following reasons:

1. Business users: Business users require data warehouse to view summarized data

from past. Since these people are non-technical, the data may be presented to them

in a very simple form.

2. Make strategic decision: Some strategies may be depending upon the data in data

warehouse. So data warehouse contribute in making strategic decisions.

3. Store historical data: Data warehouse is required to store the time variable data

from past. This data is made to be used for various purposes.

4. For data quality and consistency: Bringing the data from different sources at a

common place, user can efficiently undertake to bring the uniformity and

consistency in data.

5. High response time: Data warehouse has to be ready for fairly unexpected loads

and types of queries, which demands a high degree of flexibility and quick

response time.

How does a data warehouse differ from a database?

There are a number of fundamental differences which separate a data warehouse from a

database. The biggest difference between them is that most database place an emphasis

on a single application, and this application will generally be one that is based on

Downloaded from CSIT Tutor

transaction. If the data is analyzed, it will be done within a single domain. In contrast,

data warehouses deal with multiple domains simultaneously.

Because data warehouse deals with multiple subject areas, the data warehouse finds

connections between them. This allows the data warehouse to show how the company is

performing as a whole, rather than in individual areas.

Another powerful aspect of data warehouse is their ability to support the analysis of

trends. They are not volatile, and the information stored in them doesn’t change as much

as it would in a common database. Some of the major differences between them are listed

below:

Database Data Warehouse

1. In database tables and joins of different

tables are complex since they are

normalized for RDBMS. This is done to

reduce redundant data and to save

storage space.

2. Entity Relational modeling techniques

are used for RDBMS database design.

3. Performance is low for analysis queries.

4. Database is the place where the data is

taken as a base and managed to get

available fast and efficient access.

5. Optimized for write operation.

6. Used for Online Transaction Processing

(OLTP) but can be used for other

purpose such as data warehousing. This

records the data from the user for

history.

1. In data warehouse tables and joins are

simple since they are de-normalized.

This is done to reduce the response

time for analytical queries.

2. Data modeling techniques are used for

Data Warehouse design.

3. High performance for analytical

queries

4. Data warehouse is the place where the

application data is managed for

analysis and reporting purpose.

5. Optimized for read operations.

6. Used for Online Analytical Processing

(OLAP). This reads the historical data

for the users for business decision.

Meta Data

Meta data is the data about data or documentation about the data that is needed by the

users. Another description of metadata is that it is structured data which describes the

characteristics of a resource. Several examples of metadata are:

1. The table of contents and the index in a book may be considered metadata for the

book.

Downloaded from CSIT Tutor

2. A library catalogue may be considered metadata. The catalogue metadata consists

of a number of predefined elements representing specific attributes of a resource,

and each element can have one or more values.

3. Another example of metadata is data about the tables and figures in a document.

A table has a name and there are column names of the table that may be considered

metadata. The figures also have titles or names.

Data Marts

Data mart is a database that contains a subset of data present in a data warehouse.

Data marts are created to structure the data in a data warehouse according to

issues such as hardware platforms and access control strategies. We can divide a data

warehouse into data marts after the data warehouse has been created. The

implementation cycle of the data mart is likely to be measured in weeks rather than

months or years.

Companies often build enterprise-wide data warehouses, where a central data

warehouse serves the entire organization, or they create smaller, decentralized

warehouses called data marts. A data mart is a subset of a data warehouse in which a

summarized or highly focused portion of the organization’s data is placed in a separate

database for a specific population of users. For example, a company might develop

marketing and sales data marts to deal with customer information. A data mart typically

focuses on a single subject area or line of business, so it usually can be constructed more

rapidly and at lower cost than an enterprise-wide data warehouse.

 Data sources

 Data marts

 Data warehouse

Downloaded from CSIT Tutor

Reasons for creating a data mart

 Creates collective view by a group of users

 Easy access to frequently needed data

 Ease of creation

 Improves end-user response time

 Lower cost than implementing a full data warehouse

 Potential users are more clearly defined than in a full data warehouse

 Contains only business essential data and is less cluttered

Tools for business Intelligence

Once data have been captured and organized in data warehouses and data marts, they

are available for further analysis using tools for business intelligence. Business

intelligence tools enable users to analyze data to see new patterns, relationships, and

insights that are useful for guiding decision making. Principal tools for business

intelligence include software for database querying and reporting, tools for

multidimensional data analysis (online analytical processing), and tools for data mining.

The key general categories of business intelligence tools are:

 Spreadsheets

 Reporting and querying software: tools that extract, sort, summarize, and present

selected data

 OLAP: Online analytical processing

 Digital dashboards

 Data mining

 Data warehousing

 Local information systems

Online analytical processing (OLAP): Multidimensional data analysis

OLAP supports multidimensional data analysis, enabling users to view the same data in

different ways using multiple dimensions (data cube). Multidimensional data models are

designed expressly to support data analyses. The goal of multidimensional data models

is to support analysis in a simple and faster way by executives, managers and business

professionals. These people are not interested in the overall architecture.

Suppose your company sells five different products—Laptops, Computers, TVs,

Camera and Mobiles—in the East, West, North and Central regions. If you wanted to ask

Downloaded from CSIT Tutor

a fairly straightforward question, such as how many Computers were sold in the last

week, you could easily find the answer by using sales database. But what if you wanted

to know how many Computers sold in each of your sales regions and compare actual

results with projected sales, then the querying becomes complicated. In such a case OLAP

is used.

Each aspect of information—product, pricing, cost, region, or time period—

represents a different dimension. So, a product manager could use a multidimensional

data analysis tool to learn how many Computers were sold in the East reason in this week,

how that compares with the previous week, and how it compares with the sales forecast.

OLAP enables users to obtain online answers to ad hoc questions such as these in a fairly

rapid amount of time, even when the data are stored in very large databases, such as sales

figures for multiple years.

Time Product Location Sales
2072-01-01 Computer East region 30

2072-01-01 Laptop West region 20

2072-01-01 Camera Central region 50

2072-01-07 Mobile East region 11

2072-01-07 TV North region 23

2072-01-15 Computer West region 54

2072-01-15 Laptop Central region 09

2072-01-25 Laptop East region 32

2072-01-25 TV West region 19

Fig: Tabular representation

 1 Time

 Product

 Fig: multidimensional representation

L
o

ca
ti

o
n

WR

ER

NR

 CR

 Computer TV Mobile Camera Laptop

7

15
25

 50

 20

30

Downloaded from CSIT Tutor

Figure above shows a multidimensional model that could be created to represent

products, regions, time, and sales.

OLAP consists of four basic analytical operations: consolidation (roll-up), drill-down,

slicing and dicing, and pivoting.

 Slicing: The slice operation is the act of picking a rectangular subset of a cube by

choosing a single value for one of its dimensions, creating a new cube with one

fewer dimension. For instance, the analyst may wish to see a cross-tab on item-

name and color for a fixed value of size, for example, large, instead of the sum across

all sizes.

 Dicing: The dice operation produces a sub-cube by allowing the analyst to pick

specific values of multiple dimensions. For example, the analyst may wish to see

information about medium and large sized shorts and pants in dark and pastel

color.

 Drill Down: Drill-down is the reverse of roll-up operation. It navigates from less

detailed data to more detailed data. It allows the user to navigate among levels of

data ranging from the most summarized (up) to the most detailed (down). It

means it is the operation of moving from finer-granularity data to a coarser

granularity. For example, analyst may move from summary of pant sales to color

wise sales of pant.

 Roll-up: A roll-up involves summarizing the data along a dimension. The

summarization rule might be computing totals along a hierarchy or applying a set

of formulas such as "profit = sales - expenses". . For example, analyst may move

from color wise sales of pant sales to total sales of pant.

 Pivoting or rotating: Pivoting is the process of selecting or changing the

dimensions used in a cross-tab. Each cross-tab is a two-dimensional view on a

multidimensional data cube. For instance the analyst may select a cross-tab on

item-name and size, or a cross-tab on color and size.

Downloaded from CSIT Tutor

OLAP vs OLTP (online transaction processing)

OLAP is an acronym for Online Analytical Processing. OLAP performs multidimensional

analysis of business data and provides the capability for complex calculations, trend analysis, and

sophisticated data modeling.

OLTP (online transaction processing) is a class of software programs capable of

supporting transaction-oriented applications on the Internet. Typically, OLTP systems are used

for order entry, financial transactions, customer relationship management (CRM) and retail sales.

OLAP OLTP

Involves historical processing of information Involves day-to-day processing

OLAP systems are used by knowledge workers

such as executives, managers and analysts.

OLTP systems are used by clerks,

DBAs, or database professionals.

Useful in analyzing the business. Useful in running the business.

Based on Star Schema, Snowflake, Schema and

Fact Constellation Schema.

Based on Entity Relationship Model.

Provides summarized and consolidated data. Provides primitive and highly

detailed data.

Highly flexible. Provides high performance.

Downloaded from CSIT Tutor

Database related standards

SQL standards

The language SQL is standardized by international standard bodies such as ISO and ANSI. By

using standard SQL it should be easier to move applications between different database systems

without the need to rewrite a substantial amount of code. Using standard SQL does not give any

warranty though as all vendors does not implement all features in the standard.

SQL provides statements for a variety of tasks, including:

• Querying data

• Inserting, updating, and deleting rows in a table

• Creating, replacing, altering, and dropping objects

• Controlling access to the database and its objects

• Guaranteeing database consistency and integrity

Mimer Information Technology's policy is to develop Mimer SQL as far as possible in accordance

with the established standard. This enables users to switch to and from Mimer SQL easily. The

standard for SQL is ISO/IEC 9075:1999, referred to here as SQL-99.

 Unit 5

 Database Related Standards

 By

 Bhupendra Singh Saud

Downloaded from CSIT Tutor

The SQL standard has gone through a number of revisions

Year Name Alias Comments

1986 SQL-86 SQL-87 First published by ANSI. Ratified by ISO in 1987.

1989 SQL-89 Minor revision.

1992 SQL-92 SQL2 Major revision.

1999 SQL:1999 SQL3 Added object-oriented features, introduced OLAP,…

2003 SQL:2003 Introduced XML-related features,…

SQL 1999

 Intended as a major enhancement.

 Characterized as "object-oriented SQL“.

 In addition to the object oriented extensions, there are some other new features like;

Triggers, Stored procedures and user-defined functions, Recursive queries, OLAP, SQL

procedural constructs, Expressions in ORDER BY Savepoints, Update through unions and

joins.

 The new features are divided into five category: new data types, new predicates, enhanced

semantics, additional security, and active database.

 SQL:1999 has four new data types:

a. Large Object (LOB) type

i. CHARACTER LARGE OBJECT (CLOB)

ii. BINARY LARGE OBJECT (BLOB)

b. Boolean type

c. Two new composite types: ARRAY (storing collections of values in a column) and

ROW (storing structured values in single columns of the database)

d. Distinct types



SQL: 1999 is much more than merely SQL-92 plus object technology. It involves additional

features that we consider to fall into SQL’s relational heritage, as well as a total restructuring of

the standards documents themselves with an eye towards more effective standards progression in

the future. The features of SQL: 1999 can be partitioned into its “relational features” and its

“Object-oriented features”. Although we call this category of features “relational”, we’ll quickly

recognize that it’s more appropriately categorized as “features that relate to SQL’s traditional role

and data model” somewhat less pithy phrase. The features here are not strictly limited to the

relational model, but are also unrelated to object orientation. These features are often divided into

Downloaded from CSIT Tutor

about five groups: new data types, new predicates, enhanced semantics, additional security, and

active database.

New Data Types SQL: 1999 has four new data types (although one of them has some

identifiable variants). The first of these types is the LARGE OBJECT, or LOB, type. This is the

type with variants: CHARACTER LARGE OBJECT (CLOB) and BINARY LARGE OBJECT

(BLOB). CLOBs behave a lot like character strings, but have restrictions that disallow their use in

PRIMARY KEYs or UNIQUE predicates, in FOREIGN KEYs, and in comparisons other than

purely equality or inequality tests.

BLOBs have similar restrictions. (By implication, LOBs cannot be used in GROUP BY or

ORDER BY clauses, either.) Applications would typically not transfer entire LOB values to and

from the database (after initial storage, that is), but would manipulate LOB values through a special

client-side type called a LOB locator. In SQL:1999, a locator is a unique binary value that acts as

a sort of surrogate for a value held within the database; locators can be used in operations (such as

SUBSTRING) without the overhead of transferring an entire LOB value across the client-server

interface.

Another new data type is the BOOLEAN type, which allows SQL to directly record truth

values true, false, and unknown. Complex combinations of predicates can also be expressed in

ways that are somewhat more user-friendly than the usual sort of restructuring might make them

WHERE COL1 > COL2 AND

 COL3 = COL4 OR

UNIQUE (COL6) IS NOT FALSE

SQL: 1999 also has two new composite types: ARRAY and ROW. The ARRAY type allows one

to store collections of values directly in a column of a database table. For examples WEEKDAYS

VARCHAR (10) ARRAY[7]

New Predicates

SQL: 1999 has three new predicates, one of which we’ll consider along with the object-oriented

features. The other two are the SIMILAR predicate and the DISTINCT predicate. Since the first

version of the SQL standard, character string searching has been limited to very simple

comparisons (like =, >, or <>) and the rather rudimentary pattern matching capabilities of the LIKE

predicate:

WHERE NAME LIKE ‘%SMIT_'

SQL 2003

 Makes revisions to all parts of SQL: 1999.

 Adds a brand new part: SQL/XML (XML-Related Specifications).

 New features are categorized as:

Downloaded from CSIT Tutor

 New data types,

 Enhancements to SQL-invoked routines,

 Extensions to CREATE TABLE statement,

 A new MERGE statement,

 A new schema object - the sequence generator,

 Two new sorts of columns – identity columns and generated

columns.

 Retains all data types that existed in SQL: 1999 with the exception of the BIT and BIT

VARYING data types.

 Introduces three new data types:

 BIGINT

 MULTISET

 XML

 SQL-invoked function that returns a “table”.

 Table functions give increased functionality by allowing sets of tuples from

any external data sources to be invoked (as if they were a table).

 Table function execution can be parallelized giving improved speed and

scalability.

 In addition to the three statements for updating the database, (INSERT, UPDATE, and

DELETE) SQL: 2003 adds MERGE.

 Combining INSERT and UPDATE into MERGE.

 Transferring a set of rows from a “transaction table” to a “master table” maintained by the

database.

 Mechanism for generating unique values automatically.

 User can define minimum value, a maximum value, a start value, an increment, and a cycle

option for the sequence generator they are creating.

CREATE SEQUENCE PARTSEQ AS INTEGER

START WITH 1

INCREMENT BY 1

MINVALUE 1

MAXVALUE 10000

NO CYCLE

Downloaded from CSIT Tutor

ODMG 3.0 (Object data management group)

ODMG 3.0 was developed by the Object Data Management Group (ODMG). The ODMG is a

consortium of vendors and interested parties that work on specifications for object database and

object-relational mapping products.

ODMG 3.0 is a portability specification. It is designed to allow for portable applications

that could run on more than one product. ODMG 3.0 uses the Java, C++, and Smalltalk languages

as much as possible, to allow for the transparent integration of object programming languages.

The ODMG object model is the data model upon which the object definition language (ODL) and

object query language (OQL) are based. In fact, this object model provides the data types, type

constructors, and other concepts that can be utilized in the ODL to specify object database

schemas. Hence, it is meant to provide a standard data model for object-oriented databases, just as

the SQL report describes a standard data model for relational databases. It also provides a standard

terminology in a field where the same terms were sometimes used to describe different concepts.

Major components of ODMG 3.0 are described below;

Objects and Literals

Objects and literals are the basic building blocks of the object model. The main difference between

the two is that an object has both an object identifier and a state (or current value), whereas a literal

has only a value but no object identifier. In either case, the value can have a complex structure.

The object state can change over time by modifying the object value. A literal is basically a

constant value, possibly having a complex structure that does not change.

An object is described by four characteristics: (1) identifier, (2) name, (3) lifetime, and (4)

structure. The object identifier is a unique system-wide identifier (or Object_Id . Every object must

have an object identifier. In addition to the Object_Id, some objects may optionally be given a

unique name within a particular database—this name can be used to refer to the object in a

program, and the system should be able to locate the object given that name. Obviously, not all

individual objects will have unique names. Typically, a few objects, mainly those that hold

collections of objects of a particular object type—such as extents—will have a name. These names

are used as entry points to the database; that is, by locating these objects by their unique name, the

user can then locate other objects that are referenced from these objects. Other important objects

in the application may also have unique names. All such names within a particular database must

be unique.

The lifetime of an object specifies whether it is a persistent object (that is, a database object)

or transient object (that is, an object in an executing program that disappears after the program

terminates). Finally, the structure of an object specifies how the object is constructed by using the

type constructors. The structure specifies whether an object is atomic or a collection object.. The

Downloaded from CSIT Tutor

term atomic object is different than the way we defined the atom constructor. It is quite different

from an atomic literal.

In the object model, a literal is a value that does not have an object identifier. However, the

value may have a simple or complex structure. There are three types of literals: (1) atomic, (2)

collection, and (3) structured. Atomic literals correspond to the values of basic data types and are

predefined.

The basic data types of the object model include long, short, and unsigned integer numbers

(these are specified by the keywords Long, Short, Unsigned Long, Unsigned Short in ODL),

regular and double precision floating point numbers (Float, Double), boolean values (Boolean),

single characters (Char), character strings (String), and enumeration types (Enum), among others.

Structured literals correspond roughly to values that are constructed using the tuple constructor.

They include Date, Interval, Time, and Timestamp as built-in structures, as well as any additional

user-defined type structures as needed by each application.

User-defined structures are created using the Struct keyword in ODL, as in the C and C++

programming languages. Collection literals specify a value that is a collection of objects or values

but the collection itself does not have an Object_Id. The collections in the object model are Set<t>,

Bag<t>, List<t>, and Array<t>, where t is the type of objects or values in the collection. Another

collection type is Dictionary <k,v>, which is a collection of associations <k,v> where each k is a

key (a unique search value) associated with a value v; this can be used to create an index on a

collection of values.

Object Definition Language

The concepts of ODMG 2.0 object model can be utilized to create an object database schema using

the object definition language ODL. The ODL is designed to support the semantic constructs of

the ODMG 2.0 object model and is independent of any particular programming language. Its main

use is to create object specifications—that is, classes and interfaces. Hence, ODL is not a full

programming language. A user can specify a database schema in ODL independently of any

programming language, then use the specific language bindings to specify how ODL constructs

can be mapped to constructs in specific programming languages, such as C++, SMALLTALK,

and JAVA.

Figure of EER shows one possible set of ODL class definitions for the UNIVERSITY

database. In general, there may be several possible mappings from an object schema diagram (or

EER schema diagram) into ODL classes.

Figure EER shows the straightforward way of mapping part of the UNIVERSITY database.

Entity types are mapped into ODL classes, and inheritance is done using EXTENDS. However,

there is no direct way to map categories (union types) or to do multiple inheritance, the classes

Person, Faculty, Student, and GradStudent have the extents persons, faculty, students, and

Downloaded from CSIT Tutor

grad_students, respectively. Both Faculty and Student EXTENDS Person, and GradStudent

EXTENDS Student. Hence, the collection of students (and the collection of faculty) will be

constrained to be a subset of the collection of persons at any point in time. Similarly, the collection

of grad_students will be a subset of students. At the same time, individual Student and Faculty

objects will inherit the properties (attributes and relationships) and operations of Person, and

individual GradStudent objects will inherit those of Student.

The classes Department, Course, Section, and CurrSection are straightforward mappings of the

corresponding entity types. However, the class Grade requires some explanation. The Grade class

corresponds to the M:N relationship between Student and Section. The reason it was made into a

separate class (rather than as a pair of inverse relationships) is because it includes the relationship

attribute grade. Hence, the M:N relationship is mapped to the class Grade, and a pair of 1:N

relationships, one between Student and Grade and the other between Section and Grade. These

two relationships are represented by the following relationship properties: completed_sections of

Student; section and student of Grade; and students of Section Finally, the class Degree is used to

represent the composite, multivalued attribute degrees of GradStudent.

Object Query Language

The object query language (OQL) is the query language proposed for the ODMG object model. It

is designed to work closely with the programming languages for which an ODMG binding is

defined, such as C++, SMALLTALK, and JAVA. Hence, an OQL query embedded into one of

these programming languages can return objects that match the type system of that language. In

addition, the implementations of class operations in an ODMG schema can have their code written

in these programming languages. The OQL syntax for queries is similar to the syntax of the

relational standard query language SQL, with additional features for ODMG concepts, such as

object identity, complex objects, operations, inheritance, polymorphism, and relationships.

 Simple OQL Queries, Database Entry Points, and Iterator Variables

The basic OQL syntax is a select . . . from . . . where. . Structure, as for SQL. For example, the

query to retrieve the names of all departments in the college of ‘Engineering’ can be written as

follows:

Q1: SELECT d.dname

 FROM d IN Departmant

 WHERE d.college = ”Engineering”;

In general, an entry point to the database is needed for each query, which can be any named

persistent object. For many queries, the entry point is the name of the extent of a class. Recall that

the extent name is considered to be the name of a persistent object whose type is a collection (in

most cases, a set) of objects from the class. the named object departments is of type

set<Department>; persons is of type set<Person>; faculty is of type set<Faculty>; and so on.

Downloaded from CSIT Tutor

The use of an extent name—departments in Q0—as an entry point refers to a persistent collection

of objects. Whenever a collection is referenced in an OQL query, we should define an iterator

variable. In Q0—that ranges over each object in the collection. In many cases, as in Q0, the query

will select certain objects from the collection, based on the conditions specified in the where-

clause. In Q0, only persistent objects d in the collection of departments that satisfy the condition

d.college = ‘Engineering’ are selected for the query result. For each selected object d, the value of

d.dname is retrieved in the query result. Hence, the type of the result for Q0 is bag<string>, because

the type of each dname value is string (even though the actual result is a set because dname is a

key attribute). In general, the result of a query would be of type bag for select . . . from . . . and of

type set for select distinct . . . from . . ., as in SQL (adding the keyword distinct eliminates

duplicates).

Query Results and Path Expressions

The result of a query can in general be of any type that can be expressed in the ODMG object

model. A query does not have to follow the select . . . from . . . where . . . structure; in the simplest

case, any persistent name on its own is a query, whose result is a reference to that persistent object.

Web Services—A Standards-Based Framework for Integration

Web services are software components that can be

accessed over the Web through standards-based protocols

such as HTTP or SMTP for use in other applications. They

provide a fundamentally new framework and set of

standards for a computing environment that can include

servers, workstations, desktop clients, and lightweight

"pervasive" clients such as phones and PDAs. Web

services are not limited to the Internet; they supply a

powerful architecture for all types of distributed

computing.

Web services standards are the glue that allows computers

and devices to interact, forming a greater computing

whole that can be accessed from any device on the network.

In Web services, computing nodes have three roles—client, service, and broker.

 A client is any computer that accesses functions from one or more other computing nodes

on the network. Typical clients include desktop computers, Web browsers, Java applets,

and mobile devices. A client process makes a request for a computing service and receives

results for that request.

Web services standards are the glue that

allows computers and devices to

interact. UDDI allows clients to discover

Web services.

Downloaded from CSIT Tutor

http://www.esri.com/news/arcuser/0403/graphics/webservices_1_lg.gif

 A service is a computing process that receives and responds to requests and returns a set

of results.

 A broker is essentially a service metadata portal for registering and discovering services.

Any network client can search the portal for an appropriate service.

Because Web services can support the integration of information and services that are maintained

on a distributed network, they are appealing to local governments and other organizations that have

departments that independently collect and manage spatial data but must integrate these datasets.

The use of a connecting technology (Web services) coupled with an integrating technology (GIS)

can efficiently support this requirement. Various layers of information can be dynamically queried

and integrated but will still be maintained independently in a distributed computing environment.

Esri's Web services technology, ArcWeb Services, is built on top of ArcIMS. ArcWeb Services

leverage core business logic in ArcGIS and support Internet-based distributed computing.

A series of protocols—eXtensible Markup Language (XML); Simple Object Access Protocol

(SOAP); Web Service Description Language (WSDL); and Universal Description, Discovery, and

Integration (UDDI)—provides the key standards for Web services and supports sophisticated

communications between various nodes on a network. These protocols enable smarter

communication and collaborative processing among nodes built within any Web services-

compliant architecture.

Simple Object Access Protocol (SOAP)

SOAP (originally Simple Object Access Protocol) is a protocol specification for exchanging

structured information in the implementation of web services in computer networks. Its purpose is

to induce extensibility, neutrality and independence. It uses XML Information Set for its message

format, and relies on application layer protocols, most often Hypertext Transfer Protocol (HTTP)

or Simple Mail Transfer Protocol (SMTP), for message negotiation and transmission.

SOAP allows processes running on disparate operating systems (such as Windows and Linux) to

communicate using Extensible Markup Language (XML). Since Web protocols like HTTP are

installed and running on all operating systems, SOAP allows clients to invoke web services and

receive responses independent of language and platforms.

Downloaded from CSIT Tutor

SOAP covers the following four main areas:

 A message format for one-way communication describing how a message can be packed

into an XML document.

 A description of how a SOAP message should be transported using HTTP (for Web-based

interaction) or SMTP (for e-mail-based interaction).

 A set of rules that must be followed when processing a SOAP message and a simple

classification of the entities involved in processing a SOAP message.

 A set of conventions on how to turn an RPC call into a SOAP message and back.

What is SOAP?

 SOAP stands for Simple Object Access Protocol

 SOAP is a communication protocol

 SOAP is for communication between applications

 SOAP is a format for sending messages

 SOAP communicates via Internet

 SOAP is platform independent

 SOAP is language independent

 SOAP is based on XML

 SOAP is simple and extensible

 SOAP allows you to get around firewalls

 SOAP is a W3C recommendation

Why SOAP?

Downloaded from CSIT Tutor

 It is important for application development to allow Internet communication between

programs. Today's applications communicate using Remote Procedure Calls (RPC)

between objects like DCOM and CORBA, but HTTP was not designed for this. RPC

represents a compatibility and security problem; firewalls and proxy servers will normally

block this kind of traffic.

 A better way to communicate between applications is over HTTP, because HTTP is

supported by all Internet browsers and servers. SOAP was created to accomplish this.

 SOAP provides a way to communicate between applications running on different operating

systems, with different technologies and programming languages.

SOAP Building Blocks

A SOAP message is an ordinary XML document containing the following elements:

 An Envelope element that identifies the XML document as a SOAP message

 A Header element that contains header information

 A Body element that contains call and response information

 A Fault element containing errors and status information

Syntax Rules

Here are some important syntax rules:

 A SOAP message MUST be encoded using XML

 A SOAP message MUST use the SOAP Envelope namespace

 A SOAP message MUST use the SOAP Encoding namespace

 A SOAP message must NOT contain a DTD reference

 A SOAP message must NOT contain XML Processing Instructions

The SOAP Envelope Element

The required SOAP Envelope element is the root element of a SOAP message. This element

defines the XML document as a SOAP message.

Example

<? xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

 ...

Message information goes here

Downloaded from CSIT Tutor

 ...

</soap: Envelope>

XML (Extensible Markup Language)

What is XML?

XML stands for Extensible Markup Language. A markup language specifies the structure and

content of a document because it is extensible, XML can be used to create a wide variety of

document types. XML is a subset of a Standard Generalized Markup Language (SGML) which

was introduced in the 1980s. SGML is very complex and can be costly. Hypertext Markup

Language (HTML) is a more easily used markup language. XML can be seen as sitting between

SGML and HTML – easier to learn than SGML, but more robust than HTML.

Main features of XML:

 XML is a markup language much like HTML

 XML was designed to carry data, not to display data

 XML tags are not predefined. You must define your own tags

 XML is designed to be self-descriptive

 XML files are text files, which can be managed by any text editor.

 XML is very simple, because it has less than 10 syntax rules.

 XML is extensible, because it only specifies the structural rules of tags. No specification

on tags them self.

Example of document structure

 <bank>

 <account>

 <account-number> A-101 </account-number>

 <branch-name> Downtown </branch-name>

 <balance> 500 </balance>

 </account>

 <Depositor>

 <account-number> A-101 </account-number>

 <customer-name> Johnson </customer-name>

 </depositor>

 </bank>

Comparison of XML with Relational Data

 Inefficient: tags, which in effect represent schema information, are repeated

 Better than relational tuples as a data-exchange format

 Unlike relational tuples, XML data is self-documenting due to presence of tags

Downloaded from CSIT Tutor

 Non-rigid format: tags can be added

 Allows nested structures

 Wide acceptance, not only in database systems, but also in browsers, tools, and

applications

 The data is self-describing: e.g. the meaning of the data is included: identifiers surround

every bit of data, indicating what it means

 Far more flexible method of representing transmitted information

 Open, standard technologies for moving, processing and validating the data: e.g. the

XML parser can automatically parse, validate, and feed the information to an application,

instead of every application having to include this functionality

XML Declaration

The XML document can optionally have an XML declaration. It is written as follows:

<? xml version="1.0" encoding="UTF-8"?>

Where version is the XML version and encoding specifies the character encoding used in the

document.

Syntax Rules for XML Declaration

• The XML declaration is case sensitive and must begin with "<? xml>" where "xml" is written

in lower-case.

• If the document contains XML declaration, then it strictly needs to be the first statement of the

XML document.

• The XML declaration strictly needs be the first statement in the XML document.

 An HTTP protocol can override the value of encoding that you put in the XML declaration.

What is an XML Element?

An XML element is everything from (including) the element's start tag to (including) the element's

end tag.

<price>29.99</price>

An element can contain:

• text

• attributes

• other elements

• or a mix of the above

Example:

<bookstore>

 <book category="children">

 <title>Harry Potter</title>

Downloaded from CSIT Tutor

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category="web">

 <title>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

</bookstore>

In the example above:

<title>, <author>, <year>, and <price> have text content because they contain text (like 29.99).

<bookstore> and <book> have element contents, because they contain elements.

<book> has an attribute (category="children").

Empty XML Elements

An element with no content is said to be empty.

In XML, you can indicate an empty element like this:

<element></element>

You can also use a so called self-closing tag:

<element />

Tags and Elements

An XML file is structured by several XML-elements, also called XML-nodes or XML-tags. The

names of XML-elements are enclosed in triangular brackets < > as shown below:

<element>

Syntax Rules for Tags and Elements

Element Syntax: Each XML-element needs to be closed either with start or with end elements as

shown below:

<element>....</element>

or in simple-cases, just this way:

<element/>

Downloaded from CSIT Tutor

XML Attributes

An attribute specifies a single property for the element, using a name/value pair. An XML- element

can have one or more attributes. For example:

Tutorialspoint!

Here href is the attribute name and http://www.tutorialspoint.com/ is attribute value.

Syntax Rules for XML Attributes

• Attribute names in XML (unlike HTML) are case sensitive. That is, HREF

and href are considered two different XML attributes.

• Same attribute cannot have two values in a syntax. The following example shows incorrect

syntax because the attribute b is specified twice:

....

• Attribute names are defined without quotation marks, whereas attribute values must always

appear in quotation marks. Following example demonstrates incorrect xml syntax:

....

In the above syntax, the attribute value is not defined in quotation marks.

CDATA

The term CDATA means, Character Data. CDATA is defined as blocks of text that are not parsed

by the parser, but are otherwise recognized as markup.

The predefined entities such as <, >, and & require typing and are generally difficult to

read in the markup. In such cases, CDATA section can be used. By using CDATA section, you

are commanding the parser that the particular section of the document contains no markup and

should be treated as regular text.

Syntax

Following is the syntax for CDATA section:

<![CDATA[

characters with markup

]]>

The above syntax is composed of three sections:

• CDATA Start section: CDATA begins with the nine-character delimiter

<![CDATA[

• CDATA End section: CDATA section ends with]]> delimiter.

• CData section: Characters between these two enclosures are interpreted as characters, and

not as markup. This section may contain markup characters (<, >, and &), but they are

ignored by the XML processor.

Downloaded from CSIT Tutor

Example

The following markup code shows an example of CDATA. Here, each character written inside the

CDATA section is ignored by the parser.

<script>

<![CDATA[

<message> Welcome to NSC </message>

]] >

</script >

In the above syntax, everything between <message> and </message> is treated as character data

and not as markup

CDATA Rules

The given rules are required to be followed for XML CDATA:

• CDATA cannot contain the string "]]>" anywhere in the XML document.

• Nesting is not allowed in CDATA section

XML Encoding

Encoding is the process of converting Unicode characters into their equivalent binary

representation. When the XML processor reads an XML document, it encodes the document

depending on the type of encoding. Hence, we need to specify the type of encoding in the XML

declaration.

Encoding Types

There are mainly two types of encoding:

• UTF-8

• UTF-16

UTF stands for UCS Transformation Format, and UCS itself means Universal Character Set. The

number 8 or 16 refers to the number of bits used to represent a character. They are either 8 (one

byte) or 16 (two bytes). For the documents without encoding information, UTF-8 is set by default.

Syntax

Encoding type is included in the prolog section of the XML document. The syntax for UTF-

8 encoding is as follows:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

The syntax for UTF-16 encoding is as follows:

<?xml version="1.0" encoding="UTF-16" standalone="no" ?>

Downloaded from CSIT Tutor

Example

Following example shows the declaration of encoding:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<contact-info>

<name>College</name>

<company>NSC</company>

<phone>01-456543</phone>

</contact-info>

In the above example encoding="UTF-8", specifies that 8-bits are used to represent the characters.

To represent 16-bit characters, UTF-16 encoding can be used. The XML files encoded with UTF-

8 tend to be smaller in size than those encoded with UTF-

16 format

Nesting of element

Nesting of data is useful in data transfer

Example: elements representing customer-id, customer name, and address nested within an order

element

Nesting is not supported, or discouraged, in relational databases

With multiple orders, customer name and address are stored redundantly

normalization replaces nested structures in each order by foreign key into table storing customer

name and address information

Nesting is supported in object-relational databases

But nesting is appropriate when transferring data

External application does not have direct access to data referenced by a foreign key

Example of Nested Elements

<bank-1>

 <customer>

 <customer-name> Hayes </customer-name>

 <customer-street> Main </customer-street>

 <customer-city> Harrison </customer-city>

 <account>

 <account-number> A-102 </account-number>

 <branch-name> Perryridge </branch-name>

 <balance> 400 </balance>

 </account>

Downloaded from CSIT Tutor

 ………….

 …………..

 </customer>

 </bank-1>

XML Comment

XML comments are similar to HTML comments. The comments are added as notes or lines for

understanding the purpose of an XML code.

Comments can be used to include related links, information, and terms. They are visible only in

the source code; not in the XML code. Comments may appear anywhere in XML code.

Syntax

XML comment has the following syntax:

<!-------Your comment----->

A comment starts with <!-- and ends with -->. You can add textual notes as comments between

the characters. You must not nest one comment inside the other.

Example: Following example demonstrates the use of comments in XML document:

<?xml version="1.0" encoding="UTF-8" ?>

<!---Students grades are uploaded by months---->

<class_list>

<student>

<name>Tanmay</name>

<grade>A</grade>

</student>

</class_list>

Any text between <!-- and --> characters is considered as a comment.

XML Document

An XML document is a basic unit of XML information composed of elements and other markup

in an orderly package. An XML document can contain a wide variety of data. For example,

database of numbers, numbers representing molecular structure or a mathematical equation.

XML Document Example

A simple document is shown in the following example:

<?xml version="1.0"?>

<contact-info>

<name>NSC</name>

<company>Education_company</company>

<phone>01-449839</phone>

Downloaded from CSIT Tutor

</contact-info>

The following image depicts the parts of XML document.

XML Document Structure:

The XPath processor operates on a tree representation of XML data that looks like the following figure:

The root node has no actual text associated with it. You can think of the file name as the root node. A

document can include zero or more comments and zero or more processing instructions.

A document element is required, and there can be only one. The document element contains all

elements in the document. For example:

In the preceding figure, bookstore.xml is the name of a file that contains XML data. There is a comment

near the beginning of the document that starts with "This file represents a ..." The document element is

bookstore. The immediate children of bookstore include an attribute, a namespace declaration (not

supported by Stylus Studio), three book elements (one is in the my namespace), and a magazine

element. The book and magazine elements contain elements and attributes

An XML Document

A complete well-formed XML document may look like:

<?xml version="1.0"?>

Downloaded from CSIT Tutor

 <bank>

 <account>

 <account-number> A-101 </account-number>

 <branch-name> Downtown </branch-name>

 <balance> 500 </balance>

 </account>

 <Depositor>

 <account-number> A-101 </account-number>

 <customer-name> Johnson </customer-name>

 </depositor>

 </bank>

The Bank element, above, is the root element.

XML Document Type Declaration (DTDs)

The XML Document Type Declaration, commonly known as DTD, is a way to describe XML

language precisely. DTDs check vocabulary and validity of the structure of XML documents

against grammatical rules of appropriate XML language.

An XML DTD can be either specified inside the document, or it can be kept in a separate document

and then liked separately.

Syntax

Basic syntax of a DTD is as follows:

<! DOCTYPE element DTD identifier

[

 declaration1

 declaration2

]>

In the above syntax,

• The DTD starts with <! DOCTYPE delimiter.

• An element tells the parser to parse the document from the specified root element.

• DTD identifier is an identifier for the document type definition, which may be the path to

a file on the system or URL to a file on the internet. If the DTD is pointing to external path,

it is called External Subset.

• The square brackets [] enclose an optional list of entity declarations called Internal Subset.

Downloaded from CSIT Tutor

Internal DTD

A DTD is referred to as an internal DTD if elements are declared within the XML files. To refer

it as internal DTD, standalone attribute in XML declaration must be set to yes. This means, the

declaration works independent of external source.

Syntax

The syntax of internal DTD is as shown:

<! DOCTYPE root-element [element-declarations]>

Where root-element is the name of root element and element-declarations is where you declare the

elements.

Example

Following is a simple example of internal DTD:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<!DOCTYPE address [

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>NDC</company>

 <phone>0146575655</phone>

</address>

Let us go through the above code:

Start Declaration- Begin the XML declaration with following statement

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

DTD- Immediately after the XML header, the document type declaration follows, commonly

referred to as the DOCTYPE:

<!DOCTYPE address [

The DOCTYPE declaration has an exclamation mark (!) at the start of the element name. The

DOCTYPE informs the parser that a DTD is associated with this XML document.

DTD Body- The DOCTYPE declaration is followed by body of the DTD, where you declare

elements, attributes, entities, and notations:

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT company (#PCDATA)>

Downloaded from CSIT Tutor

<!ELEMENT phone_no (#PCDATA)>

Several elements are declared here that make up the vocabulary of the <name> document.

<!ELEMENT name (#PCDATA)> defines the element name to be of type "#PCDATA". Here

#PCDATA means parse-able text data.

End Declaration - Finally, the declaration section of the DTD is closed using a closing bracket

and a closing angle bracket (]>). This effectively ends the definition, and thereafter, the XML

document follows immediately.

Rules

• The document type declaration must appear at the start of the document (preceded only by

the XML header) — it is not permitted anywhere else within the document.

• Similar to the DOCTYPE declaration, the element declarations must start with an

exclamation mark.

• The Name in the document type declaration must match the element type of the root

element.

External DTD

In external DTD elements are declared outside the XML file. They are accessed by specifying the

system attributes which may be either the legal .dtd file or a valid URL. To refer it as external

DTD, standalone attribute in the XML declaration must be set as no. This means, declaration

includes information from the external source.

Syntax

Following is the syntax for external DTD:

<!DOCTYPE root-element SYSTEM "file-name">

where file-name is the file with .dtd extension.

Example

The following example shows external DTD usage:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE address SYSTEM "address.dtd">

<address>

 <name>Tanmay Patil</name>

 <company>NSC</company>

 <phone>0167655565</phone>

</address>

The content of the DTD file address.dtd are as shown:

<!ELEMENT address (name,company,phone)>

<!ELEMENT name (#PCDATA)>

Downloaded from CSIT Tutor

<!ELEMENT company (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

XML Schema

XML Schema is commonly known as XML Schema Definition (XSD). It is used to describe and

validate the structure and the content of XML data. XML schema defines the elements, attributes

and data types. Schema element supports Namespaces. It is similar to a database schema that

describes the data in a database.

Syntax

You need to declare a schema in your XML document as follows:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

Example

The following example shows how to use schema:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="contact">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 <xs:element name="phone" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The basic idea behind XML Schemas is that they describe the legitimate format that an XML

document can take.

Elements

As we saw in the XML - Elements chapter, elements are the building blocks of XML document.

An element can be defined within an XSD as follows:

<xs:element name="x" type="y"/>

Definition Types

You can define XML schema elements in following ways:

Downloaded from CSIT Tutor

Simple Type - Simple type element is used only in the context of the text. Some of predefined

simple types are: xs:integer, xs:boolean, xs:string, xs:date. For example:

<xs:element name="phone_number" type="xs:int" />

Complex Type - A complex type is a container for other element definitions. This allows you to

specify which child elements an element can contain and to provide some structure within your

XML documents. For example:

<xs:element name="Address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 <xs:element name="phone" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

In the above example, Address element consists of child elements. This is a container for other

<xs:element> definitions, that allows to build a simple hierarchy of elements in the XML

document.

Global Types - With global type, you can define a single type in your document, which can be

used by all other references. For example, suppose you want to generalize the person and company

for different addresses of the company. In such case, you can define a general type as below:

<xs:element name="AddressType">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="name" type="xs:string" />

 <xs:element name="company" type="xs:string" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Now let us use this type in our example as below:

<xs:element name="Address1">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="address" type="AddressType" />

 <xs:element name="phone1" type="xs:int" />

Downloaded from CSIT Tutor

 </xs:sequence>

 </xs:complexType>

</xs:element>

<xs:element name="Address2">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="address" type="AddressType" />

 <xs:element name="phone2" type="xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

Instead of having to define the name and the company twice (once for Address1 and once for

Address2), we now have a single definition. This makes maintenance simpler, i.e., if you decide

to add "Postcode" elements to the address, you need to add them at just one place.

X-Query

XQuery is a standardized language for combining documents, databases, Web pages and almost

anything else. It is very widely implemented. It is powerful and easy to learn. XQuery is replacing

proprietary middleware languages and Web Application development languages. XQuery is

replacing complex Java or C++ programs with a few lines of code. XQuery is simpler to work with

and easier to maintain than many other alternatives.

Characteristics

• XQuery is the language for querying XML data

• XQuery for XML is like SQL for databases

• XQuery is built on XPath expressions

• XQuery is supported by all major databases

Benefits of XQuery

• Using XQuery, both hierarchical and tabular data can be retrieved.

• XQuery can be used to query tree and graphical structures.

• XQuery can be directly used to query webpages.

• XQuery can be directly used to build webpages.

• XQuery can be used to transform xml documents.

• XQuery is ideal for XML-based databases and object-based databases. Object databases

are much more flexible and powerful than purely tabular databases.

Downloaded from CSIT Tutor

Example

Following is a sample XML document containing the records of a bookstore of various books.

books.xml

<?xml version="1.0" encoding="UTF-8"?>

<books>

 <book category="JAVA">

 <title lang="en">Learn Java in 24 Hours</title>

 <author>Robert</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

 <book category="DOTNET">

 <title lang="en">Learn .Net in 24 hours</title>

 <author>Peter</author>

 <year>2011</year>

 <price>70.50</price>

 </book>

 <book category="XML">

 <title lang="en">Learn XQuery in 24 hours</title>

 <author>Robert</author>

 <author>Peter</author>

 <year>2013</year>

 <price>50.00</price>

 </book>

 <book category="XML">

 <title lang="en">Learn XPath in 24 hours</title>

 <author>Jay Ban</author>

 <year>2010</year>

 <price>16.50</price>

 </book>

</books>

Following is a sample XQuery document containing the query expression to be executed on the

above XML document. The purpose is to get the title elements of those XML nodes where the

price is greater than 30.

Downloaded from CSIT Tutor

books.xqy

for $x in doc("books.xml")/books/book

where $x/price>30

return $x/title

Result

<title lang="en">Learn .Net in 24 hours</title>

<title lang="en">Learn XQuery in 24 hours</title>

XSLT

XSLT (Extensible Style sheet Language Transformations) is a language for transforming XML

documents into other XML documents, or other formats such as HTML for web pages, plain text

or XSL Formatting Objects, which may subsequently be converted to other formats, such as PDF,

PostScript and PNG.

X-path

XPath is a major element in the XSLT standard. XPath can be used to navigate through elements

and attributes in an XML document. XPath is a syntax for defining parts of an XML document.

XPath uses path expressions to navigate in XML documents. XPath contains a library of standard

functions.

 An XPath expression returns a collection of element nodes that satisfy certain patterns

specified in the expression.

 The names in the XPath expression are node names in the XML document tree that are

either tag (element) names or attribute names, possibly with additional qualifier

conditions to further restrict the nodes that satisfy the pattern.

 There are two main separators when specifying a path: single slash (/) and double slash

(//).

 A single slash before a tag specifies that the tag must appear as a direct child of the previous

(parent) tag, whereas a double slash specifies that the tag can appear as a descendant of the

previous tag at any level.

Some examples are given below:

Downloaded from CSIT Tutor

XML Applications

 Storing and exchanging data with complex structures

o E.g. Open Document Format (ODF) format standard for storing Open Office and Office

Open XML (OOXML) format standard for storing Microsoft Office documents

o Numerous other standards for a variety of applications

 ChemML, MathML

 Standard for data exchange for Web services

o Remote method invocation over HTTP protocol

o More in next slide

 Data mediation

o Common data representation format to bridge different systems

Downloaded from CSIT Tutor

